Режимы резания для фрезы 25мм hss. Режим резания. Использование фрез для станков с ЧПУ

Режимы резания, используемые на практике, в зависимости от обрабатываемого материала и типа фрезы.

Приведенная ниже таблица содержит справочную информацию параметров режима резания, взятые из практики нашего производства. От этих режимов рекомендуется отталкиваться при обработке различных материалов со схожими свойствами, но не обязательно строго придерживаться их.

Необходимо учитывать, что на выбор режимов резания, при обработке одного и того же материала одним и тем же инструментом, влияет множество факторов, основными из которых являются: жесткость системы Станок Приспособление Инструмент Деталь, охлаждение инструмента, стратегия обработки, высота слоя снимаемого за проход и размер обрабатываемых элементов.

Обрабаты-
ваемый материал
Тип работы Тип фрезы Частота, об/мин Подача (XY), мм/мин Примечание
Акрил V-гравировка 18000-24000 500-1500 По 0.2-0.5 мм за проход.
Раскрой
Выборка
18000-20000 2500-3500 Встречное фрезерование.
Не более 3-5 мм за проход.
ПВХ до 10 мм Раскрой
Выборка
Фреза спиральная 1-заходная d=3.175 мм или 6 мм 18000-20000 3000-5000 Встречное фрезерование.
Двухслойный пластик Гравировка Конический гравер, плоский гравер 18000-24000 1000-2000 По 0.3-0,5 мм за проход.
Композит Раскрой Фреза спиральная 1-заходная d=3.175 мм или 6 мм 18000-20000 3000-3500 Встречное фрезерование.
Дерево
ДСП
Раскрой
Выборка
Фреза спиральная 1-заходная d=3.175 мм или 6 мм 18000-22000 2500-3500 Встречное фрезерование.
По 5 мм за проход (подбирать, чтобы не обугливалось при резке поперек слоев).
15000-16000 3000-4000 Не более 10 мм за проход.
Гравировка Фреза спиральная 2-заходная круглая d=3.175 мм До 15000 1500-2000 Не более 5 мм за проход.
Конический гравер d=3.175 мм или 6 мм 18000-24000 1500-2000 Не более 5 мм за проход (в зависимости от угла заточки и пятна контакта).
Шаг не более 50% от пятна контакта (T).
V-гравировка V-образный гравер d=6 мм., A=90, 60 град., T=0.2 мм До 15000 1500-2000 Не более 3 мм за проход.
МДФ Раскрой
Выборка
Фреза спиральная 1-заходная с удалением стружки вниз d=6 мм 20000-21000 2500-3500 Не более 10 мм за проход.
При выборке шаг не более 45% от d.
Фреза спиральная 2-заходная компрессионная d=6 мм 15000-16000 2500-3500 Не более 10 мм за проход.
Латунь
ЛС 59
Л-63бронза
БрАЖ
Раскрой
фрезеровка
Фреза спиральная 2-заходная d=2 мм 15000 500-1200 По 0,5 мм за проход.
Желательно использовать СОЖ.
Гравировка До 24000 500-1200 По 0.3 мм за проход.
Шаг не более 50% от пятна контакта (T).
Желательно использовать СОЖ.
Дюралюминий, Д16, АД31 Раскрой
фрезеровка
Фреза спиральная 1-заходная d=3.175 мм или 6 мм 15000-18000 800-1500 По 0,2-0,5 мм за проход.
Желательно использовать СОЖ.
Дюралюминий, Д16, АД31 Гравировка Конический гравер A=90, 60, 45, 30 град. До 24000 500-1200 По 0.3 мм за проход.
Шаг не более 50% от пятна контакта (T).
Желательно использовать СОЖ.
Магний Гравировка Конический гравер A=90, 60, 45, 30 град. 12000-15000 500-700 По 0,5 мм за проход.
Шаг не более 50% от пятна контакта (T).

*Фрезерной обработке лучше всего подвергать пластики полученные литьем, т.к. у них более высокая температура плавления.

*При резке акрила и алюминия желательно для охлаждения инструмента использовать смазывающую и охлаждающую жидкость (СОЖ), в качестве СОЖ может выступать обыкновенная вода или универсальная смазка WD-40 (в баллончике).

*При резке акрила, когда подсаживается (притупляется) фреза, необходимо понизить обороты до момента пока не пойдет колкая стружка (осторожнее с подачей при низких оборотах шпинделя - вырастает нагрузка на инструмент и соответственно вероятность его сломать).

*Для фрезеровки пластиков и мягких металлов, наиболее подходящими являются однозаходные (однозубые) фрезы (желательно с полированной канавкой для отвода стружки). При использовании однозаходных фрез создаются оптимальные условия для отвода стружки и соответственно отвода тепла из зоны реза.

*При фрезеровке пластиков, для улучшения качества реза, рекомендуется использовать встречное фрезерование.

*Для получения приемлемой шероховатости обрабатываемой поверхности, шаг между проходами фрезы/гравера необходимо делать равным или меньше рабочего диаметра фрезы(d)/пятна контакта гравера (T).

*Для улучшения качества обрабатываемой поверхности желательно не обрабатывать заготовку на всю глубину сразу, а оставить небольшой припуск на чистовую обработку.

*При резке мелких элементов необходимо снизить скорость резания, чтобы вырезанные элементы не откалывались в процессе обработки и не повреждались.

На практике:

Расчётные параметры - хорошо, но учесть полностью всё, практически не возможно. Существуют более полные формулы по расчётам режимов резания, в которых используют десятки параметров. Такие формулы применяют в массовом производстве, да и то, с последующей корректировкой. В единичном производстве применяют справочные таблицы и упрощенные формулы с обязательной корректировкой под конкретные условия. Накопленный опыт, позволяет быстро выбирать рациональные режимы резания.

Теоретические основы по выбору режимов резания

Скорость вращения и скорость подачи - это основные параметры для установки режимов резанья.

Скорость вращения (n) - зависит от характеристик шпинделя, инструмента и обрабатываемого материала. Для большинства современных шпинделей обороты варьируются в диапазоне 12 000 - 24 000 об/мин (для высокоскоростных 40 000 - 60 000 об/мин).

Скорость вращения вычисляется по формуле:

d - диаметр режущей части инструмента (мм)
П - число Пи, постоянная величина = 3.14
V - скорость резания (м/мин) - это путь пройденный точкой режущей кромки фрезы в единицу времени

Для расчетов скорость резания (V) берут из справочных таблиц в зависимости от обрабатываемого материала.

Часто начинающие фрезеровщики путают скорость резанья (V) со скоростью подачи (S), но на деле это совершенно разные параметры!

Примечание:
Для фрез с малым диаметром режущей части, расчетная скорость вращения (n) может оказаться значительно выше максимальной скорости вращения шпинделя, поэтому для дальнейшего расчета скорости подачи (S) необходимо брать фактическую, а не расчетную величину скорости вращения (n).

Скорость подачи (S) - это скорость перемещения фрезы, вычисляется по формуле:

fz - подача на один зуб фрезы (мм)
z - количество зубьев
n- скорость вращения (об/мин)
Скорость врезания по оси Z (Sz) берется как 1/3 от скорости подачи по оси XY (S)

Таблица выбора скорости резания (V) и подачи на зуб (fz)

Обрабатываемый материал

Скорость резания (V), м/мин

Подача на зуб (fz), мм
В зависимости от диаметра фрезы d

Оргстекло

Алюминий

Латунь, Бронза

Термопласты

Стеклопластик

Примечание:
Если система СПИД (Станок-Приспособление-Инструмент-Деталь) с низкой жесткостью, то величину скорости резания выбираем ближе минимальным значениям, если система СПИД имеет среднюю и высокую жесткость, то соответственно и величину выбираем ближе к средним и максимальным значениям.

1. Фрезы подбирайте по принципу - наименьшая рабочая длина и наибольший рабочий диаметр необходимый для выполнения конкретной работы (фрезы с избыточной длиной и минимальным диаметром менее жесткие и склоны к образованию вибраций). Также при выборе диаметра фрезы учитывайте возможности станка, т.к. при использовании большого диаметра фрезы у шпинделя и привода станка может не хватить мощности
2. Правильно выбирайте конфигурацию фрезы. Стружечная канавка должна быть больше, чем объем снимаемого материала. Если стружка не будет свободно эвакуироваться из зоны резания, она забьет канал и инструмент начнет продавливать материал, а не резать его.
3. При обработке мягких материалов и материалов склонных к налипанию рекомендуется применять 1-заходные фрезы. Для обработки материалов средней жесткости рекомендуется применять 2-заходные фрезы. При обработке жестких материалов рекомендуется применять 3-х и более заходные фрезы.

Определим режимы резания для чернового фрезерования плоской поверхности на фрезерном станке в следующей последовательности:

1.4.1. Глубину резания t , мм,определяют в зависимости от типа

применяемой фрезы, конфигурации обрабатываемой

поверхности и от вида оборудования.

1.4.2. Назначить подачу S , мм/об

При фрезеровании различают подачу на один зуб S z , мм/зуб, подачу на один оборот фрезы S и подачу минутную S м , мм/мин, которые находятся в следующем соотношении:

, (9.28)

где n – частота вращения фрезы, мин -1 ;

z – число зубьев фрезы.

Исходной величиной подачи при черновом фрезеровании является величина подачи на один зуб S z , значение которой для различных фрез и условий резания приведены в таблице 9.13 и таблице 9.14 приложения Д.

Выбрать модель фрезерного станка, на котором будет выполняться фрезерование, с учетом заданной мощности станка.

, (9.29)

где D – диаметр фрезы, мм;

S z – подача, мм/зуб;

t – глубина обработки, мм;

В – ширина обработки, мм;

z – число зубьев фрезы;

С v , q,m , – коэффициенты, значения которых определяются

x, у , и,р по таблице 9.15 приложения Д;

Т – период стойкости инструмента, мин, определяется

по таблице 9.16 приложения Д;

К v – поправочный коэффициент на скорость,

учитывающий фактические условия резания,

определяется по формуле:

, (9.30)

где K mv – коэффициент, учитывающий качество

обрабатываемого материала, определяется по

таблице 9.3 приложения Д;

K nv – коэффициент, учитывающий состояние поверхности

заготовки:

Для стальной заготовки K nv = 0,9;

Для чугунной заготовки K nv =0,8;

Для медной заготовки K nv =0,9;

K и v – коэффициент, учитывающий влияние материала

инструмента, определяется по таблице 9.5

приложения Д.

1.4.4. Определить и скорректировать частоту вращения фрезы n , мин -1 , согласно рекомендациям пункта 1.2.4.

1.4.6. Определить величину минутной подачи S м , мм/мин:

, (9.31)

и скорректировать значение полученной подачи S м по паспортным данным выбранного станка. С учетом откорректированного значения S м скорректировать значение подачи S z, мм/зуб:

, (9.32)

где n – частота вращения фрезы, имеющаяся на станке,мин -1 ;

z – число зубьев фрезы.

1.4.7. Определить главную составляющую силы резания при фрезеровании – окружную силу Р z , Н, по формуле:

, (9.33)

где D – диаметр фрезы, мм;

S z – подача, мм/зуб;

t – глубина обработки, мм;

В – ширина обработки, мм;

z – число зубьев фрезы;

n – частота вращения фрезы, имеющаяся на станке,мин -1 .

С p , q,m , – коэффициенты, значения которых определяются

x, у , и, w по таблице 9.17 приложения Д;

K m p – поправочный коэффициент, который

определяется по таблице 9.7 приложения Д;

, (9.34)

где D – диаметр фрезы, мм;

Р z – главная составляющая сила резания при фрезеровании, Н

1.4.9. Определить мощность резания Np, кВт, по формуле:

,(9.35)

где Pz – главная составляющая силы резания, Н;

V – фактическая скорость резания, м/мин.

Полученное значение мощности резания N p сравнить с мощностью электродвигателя выбранного станка по рекомендациям, изложенными в пункте 1.2.7.

1.4.10. Определить основное время Т 0 , мин.

ЭЛЕМЕНТАРНЫЕ ПОНЯТИЯ О ТЕОРИИ РЕЗАНИЯ

§ 10. ЭЛЕМЕНТЫ РЕЗАНИЯ ПРИ ФРЕЗЕРОВАНИИ

В процессе фрезерования зубья фрезы при ее вращении последовательно один за другим врезаются в надвигающуюся заготовку и снимают стружку, осуществляя резание.
Элементами резания при фрезеровании являются ширина фрезерования, глубина фрезерования, скорость резания и подача.

Ширина и глубина фрезерования

Шириной фрезерования называют ширину обрабатываемой поверхности в миллиметрах (рис. 52). Ширина фрезерования обозначается через В.


Глубиной резания при фрезеровании, или глубиной фрезерования , или часто глубиной срезаемого слоя, называют толщину (в миллиметрах) слоя металла, снимаемого с поверхности заготовки фрезой за один проход, как это показано на рис. 52. Глубина фрезерования обозначается через t. Глубина фрезерования измеряется как расстояние между обрабатываемой и обработанной поверхностями.
Весь слой металла, который необходимо удалить при фрезеровании, называется, как указывалось выше, припуском на обработку. Глубина фрезерования зависит от припуска на обработку и мощности станка. Если припуск велик, обработку производят в несколько переходов. При этом последний переход производят с небольшой глубиной резания для получения более чистой поверхности обработки. Такой переход называют чистовым фрезерованием в отличие от чернового, или предварительного фрезерования, которое производят с большей глубиной фрезерования. При небольшом припуске на обработку фрезерование производят обычно с одного прохода.

На рис. 53 показана ширина В и глубина фрезерования t при обработке основными видами фрез.

Скорость резания

Главным движением при фрезеровании является вращение фрезы. В процессе фрезерования фреза вращается с определенным числом оборотов, которое устанавливается при настройке станка; однако для характеристики вращения фрезы принимают не число ее оборотов, а так называемую скорость резания.
Скоростью резания при фрезеровании называют путь, который проходят в одну минуту наиболее отдаленные от оси точки режущей кромки зуба фрезы. Скорость резания обозначается через υ.
Обозначим диаметр фрезы через D и предположим, что фреза делает один оборот в минуту. В этом случае режущая кромка зуба фрезы пройдет в минуту путь, равный длине окружности диаметра D мм , т. е. πD миллиметров. В действительности фреза делает больше одного оборота в минуту. Предположим, что фреза делает n оборотов в минуту, тогда режущая кромка каждого зуба фрезы пройдет в одну минуту путь, равный πDn мм . Следовательно, скорость резания при фрезеровании равна πDn мм/мин .
Обычно скорость резания при фрезеровании выражают в метрах в минуту, для чего необходимо полученное выражение скорости в мм/мин разделить на 1000. Тогда формула скорости резания при фрезеровании примет вид:

Из формулы (1) следует, что чем больше диаметр D фрезы, тем больше скорость резания при данном числе оборотов, и чем больше число оборотов n шпинделя, тем больше скорость резания при данном диаметре фрезы.

Пример 1 . Фреза диаметром 100 мм делает 140 об/мин. Определить скорость резания.
В данном случае D = 100 мм ; n = 140 об/мин . По формуле (1) имеем:

На производстве часто приходится решать обратную задачу: по заданной скорости резания υ определить число оборотов фрезы n или ее диаметр D .
Для этой цели применяют формулы:

Пример 2 . Обработку предложено производить при скорости резания 33 м/мин . Фреза имеет диаметр 100 мм . Сколько оборотов надо дать фрезе?
В данном случае υ = 33 м/мин ; D = 100 мм .
По формуле (2а) имеем:

или

Пример 3. Скорость резания составляет 33 м/мин . Число оборотов фрезы составляет 105 об/мин . Определить диаметр фрезы, которую надо применить для данной обработки.
В данном случае υ = 33 м/мин ; n = 105 об/мин .
По формуле (26) получаем:

или

Не всегда на станке можно установить число оборотов шпинделя в минуту, которое точно соответствует полученному по формуле (2а). Также не всегда удается подобрать фрезу точно того диаметра, (который получается по формуле (26). В этих случаях берут ближайшее меньшее число оборотов шпинделя в минуту из имеющихся на станке и фрезу с ближайшим меньшим диаметрам из имеющихся в кладовой.


Для определения числа оборотов шпинделя при заданной скорости резания и выбранном диаметре фрезы можно пользоваться графиками. На графике рис. 54 указаны располагаемые числа оборотов шпинделя консольно-фрезерных станков второго и третьего размеров (6М82, 6М82Г и 6М12П, 6М83, 6М83Г и 6М13П), изображенные в виде лучей, вследствие чего такие графики называют лучевыми диаграммами . На горизонтальной оси отложены диаметры фрез в мм , а по вертикальной оси - скорости резания в м/мин . Пользование графиком поясняется следующими примерами.
Пример 4 . Определить число оборотов шпинделя консольно-фрезерного станка 6М82Г при обработке стали цилиндрической фрезой из быстрорежущей стали диаметром 63 мм , если задана скорость резания υ = 27 м/мин .
По графику на рис. 54 от точки, соответствующей скорости резания 27 м/мин , проводим горизонтальную линию до пересечения с вертикальной линией, проведенной от точки, соответствующей диаметру фрезы 63 мм n = 125 и n = 160. Принимаем меньшее число оборотов n = 125 об/мин .
Пример 5 . Определить число оборотов шпинделя консольно-фрезерно-го станка 6М13П при обработке чугуна торцовой фрезой диаметром 160 мм , оснащенной твердым сплавом, если задана скорость резания υ = 90 м/мин .
По графику на рис. 54 от точки, соответствующей скорости резания 90 м/мин , проводим горизонтальную линию до пересечения с вертикальной линией, проведенной от точки, соответствующей диаметру фрезы в 160 мм . Искомое число оборотов шпинделя лежит между n = 160 и n = 200. Принимаем меньшее число оборотов n = 160 об/мин .
Такую лучевую диаграмму нетрудно вычертить самому для станка другой модели и размера.
Применение лучевой диаграммы упрощает подбор числа оборотов шпинделя станка и позволяет обходиться без применения формулы (2а).

Подача

Движение подачи при фрезеровании выполняется либо вручную, либо механизмом станка. Оно может быть осуществлено перемещением стола станка в продольном направлении, перемещением салазок в поперечном направлении и перемещением консоли в вертикальном направлении. У бесконсольных вертикально-фрезерных станков крестовой стол имеет продольное и поперечное перемещения, а вертикальное перемещение получает шпиндельная головка. При работе на продольно-фрезерных станках продольное перемещение имеет стол, а поперечные и вертикальные перемещения получают шпиндельные головки. При работе на круглом поворотном столе на вертикально-фрезерных станках, на карусельно- и барабанно-фрезерных станках имеет место круговая подача стола.
При фрезеровании различают:
подачу в одну минуту - перемещение стола в миллиметрах за 1 мин.; обозначается s и выражается в мм/мин ;
подачу на один оборот фрезы - перемещение стола в миллиметрах за полный оборот фрезы; обозначается s 0 и выражается в мм/об ;
подачу на один зуб фрезы - перемещение стола в миллиметpax за время, когда фреза повернется на часть оборота, соответствующую расстоянию от одного зуба до другого (на один шаг); обозначается s зy6 и выражается в мм/зуб . Часто подачу на один зуб фрезы обозначают s z .
На практике пользуются всеми тремя значениями подачи. Они связаны между собой простыми зависимостями:

(3) (4) (5)

где z - число зубьев фрезы.
Пример 6 . Фреза с 10 зубьями делает 200 об/мин при подаче 300 мм/мин . Определить подачу на один оборот фрезы и на один зуб.
В данном случае s = 300 мм/мин ; n =200 об/мин и z =10.

Подставляя известные величины, получаем:

Главное движение, или вращение фрезы, и движение подачи могут быть направлены навстречу друг другу - встречное фрезерование, называемое обычно фрезерованием против подачи , или в одном направлении - попутное фрезерование, называемое обычно фрезерованием по подаче .

Понятие о режиме резания при фрезеровании

Скорость резания, подача, глубина и ширина резания не могут выбираться произвольно фрезеровщиком по собственному усмотрению, так как это может вызвать преждевременное затупление фрезы, перегрузку и даже поломку отдельных узлов станка, нечистую поверхность обработки и т. д.
Все перечисленные выше элементы резания находятся в тесной зависимости друг от друга. Например, с увеличением скорости резания необходимо уменьшать подачу на зуб и снижать глубину резания, фрезерование с большой шириной резания требует уменьшения скорости резания и подачи, фрезерование с большой глубиной резания (черновую обработку) производят с меньшей скоростью резания, чем чистовую обработку, и т. д.
Кроме того, назначение скорости резания зависит от материала фрезы и материала заготовки. Фреза из быстрорежущей стали, как уже знаем, допускает большие скорости резания, чем из углеродистой стали; в свою очередь скорость резания для твердосплавной фрезы может быть в 4-5 раз выше, чем для быстрорежущей. Легкие сплавы можно фрезеровать со значительно большей скоростью резания, чем чугун. Чем тверже (крепче) стальная заготовка, тем меньше должна быть скорость резания.
Совокупность всех перечисленных выше элементов (скорость резания, подача, глубина и ширина фрезерования) в правиль-ном взаимном сочетании составляет режим резания при фрезеровании, или, сокращенно, режим фрезерования .
Наука о резании металлов установила рациональные скорости резания и подачи при заданных глубине резания и ширине фрезерования при обработке различных металлов и сплавов для углеродистых, быстрорежущих и твердосплавных фрез, поэтому назначение режима фрезерования производится на научном основании по соответствующим таблицам, так называемым нормативам режимов резания.

Это расстоение, которое проходит фреза за время работы одного зуба (за один оборот для однозаходных фрез, пол-оборота для двухзаходных, треть - для трёхзаходных и т. д.). Параметр наглядно представляет нагрузку режущей кромки.

fмин = z * fz * n,

где fмин - минутная подача (мм/мин), z - количество зубьев фрезы, fz - подача на зуб, n - частота вращения шпинеля.

Некоторые производители фрез (например, Onsrud и Belin) указывают рекомендованные значения подачи на зуб для каждого инструмента, что очень и очень удобно. Но если Вам неизвестен этот параметр, можно ориентироваться на диапазон 0,05-0,2 мм: обычно адеквартные значения fz лежат в этих пределах (для резки неметаллических материалов). Помните: слишком низкие подачи вызывают горение фрезы, а высокие - её поломку.

Пример. Выбираем fz = 0,12 мм для двухзаходного инструмента и считаем минутную подачу: fмин = 2 зуба * 0,12 мм * 18000 об./мин = 4320 мм/мин. Готово:-)

Комментарии

Дмитрий Мирошниченко 27 Мар 2019, 11:32

Николай, фанеру можно резать любым инструментом из соответствующего раздела на сайте: https://сайт/vybrat/fanera/. Диаметр фрезы обычно выбирается в диапазоне 0,3-1 части от толщины материала. Режимы на каждом станке разные, зависят от многих факторов. В целом, диапазон подач по фанере часто лежит в пределах 0,1-0,25 мм/зуб..

Дмитрий Мирошниченко 27 Мар 2019, 11:20

Что касается фрезы 63-610, то все режимы, которые даёт производитель, указаны на странице инструмента: https://сайт/frezy/onsrud-63-610/. Там нет режимов для алюминиевых композитных панелей, поэтому рекомендовать ничего не могу. Скажу только, что эти панели режут только в путь почти любой фрезой. Подачи часто выставляют в 2-4 раза выше 3-х тысяч мм/мин с оборотами, близкими к максимальным для диаметра. Материал редко доставляет проблемы, надо экспериментировать на своём станке, со своими панелями, чтобы придти к оптимальному режиму.

Приведенная ниже таблица содержит справочную информацию параметров режима резания, взятые из практики производства. От этих режимов рекомендуется отталкиваться при обработке различных материалов со схожими свойствами, но не обязательно строго придерживаться их.

Необходимо учитывать, что на выбор режимов резания, при обработке одного и того же материала одним и тем же инструментом, влияет множество факторов, основными из которых являются:

  • жесткость системы Станок – Приспособление – Инструмент – Деталь ,
  • охлаждение инструмента,
  • стратегия обработки,
  • высота слоя снимаемого за проход и
  • размер обрабатываемых элементов.
Обрабатываемый материал Тип работы Тип фрезы Частота, об/мин Подача (XY), мм/мин Примечание
Акрил V-гравировка 18000-24000 500-1500 По 0.2-0.5 мм за проход.
Раскрой
Выборка
18000-20000 2500-3500 Встречное фрезерование.
Не более 3-5 мм за проход.
ПВХ до 10 мм Раскрой
Выборка
Фреза спиральная 1-заходная d=3.175 мм или 6 мм 18000-20000 3000-5000 Встречное фрезерование.
Двухслойный пластик Гравировка Конический гравер, плоский гравер 18000-24000 1000-2000 По 0.3-0,5 мм за проход.
Композит Раскрой Фреза спиральная 1-заходная d=3.175 мм или 6 мм 18000-20000 3000-3500 Встречное фрезерование.
Дерево
ДСП
Раскрой
Выборка
Фреза спиральная 1-заходная d=3.175 мм или 6 мм 18000-22000 2500-3500 Встречное фрезерование.
По 5 мм за проход (подбирать, чтобы не обугливалось при резке поперек слоев).
18000-2000 3000-4000 Не более 10 мм за проход.
Гравировка Фреза спиральная 2-заходная круглая d=3.175 мм До 15000 1500-2000 Не более 5 мм за проход.
Конический гравер d=3.175 мм или 6 мм 18000-24000 1500-2000 Не более 5 мм за проход (в зависимости от угла заточки и пятна контакта).
Шаг не более 50% от пятна контакта (T).
V-гравировка V-образный гравер d=6 мм., A=90, 60 град., T=0.2 мм До 15000 1500-2000 Не более 3 мм за проход.
МДФ Раскрой
Выборка
Фреза спиральная 1-заходная с удалением стружки вниз d=6 мм 20000-21000 2500-3500 Не более 10 мм за проход.
При выборке шаг не более 45% от d.
Фреза спиральная 2-заходная компрессионная d=6 мм 20000-21000 2500-3500 Не более 10 мм за проход.
Латунь
ЛС 59
Л-63

бронза
БрАЖ

Раскрой
фрезеровка
Фреза спиральная 2-заходная d=2 мм 15000 500-1200 По 0,5 мм за проход.
Желательно использовать СОЖ.
Гравировка До 24000 500-1200 По 0.3 мм за проход.
Шаг не более 50% от пятна контакта (T).
Желательно использовать СОЖ.
Дюралюминий, Д16, АД31 Раскрой
фрезеровка
Фреза спиральная 1-заходная d=3.175 мм или 6 мм 12000-18000 800-1500 По 0,2-0,5 мм за проход.
Желательно использовать СОЖ.
Магний Гравировка Конический гравер A=90, 60, 45, 30 град. 12000-15000 500-700 По 0,5 мм за проход.
Шаг не более 50% от пятна контакта (T).

* Фрезерной обработке лучше всего подвергать пластики полученные литьем, т.к. у них более высокая темпера плавления.

* При резке акрила и алюминия желательно для охлаждения инструмента использовать смазывающую и охлаждающую жидкость (СОЖ), в качестве СОЖ может выступать обыкновенная вода или универсальная смазка WD-40 (в баллончике).

* При резке акрила, когда подсаживается (притупляется) фреза, необходимо понизить обороты до момента пока не пойдет колкая стружка (осторожнее с подачей при низких оборотах шпинделя - вырастает нагрузка на инструмент и соответственно вероятность его сломать).

* Для фрезеровки пластиков и мягких металлов, наиболее подходящими являются однозаходные (однозубые) фрезы (желательно с полированной канавкой для отвода стружки). При использовании однозаходных фрез создаются оптимальные условия для отвода стружки и соответственно отвода тепла из зоны реза.

* При фрезеровке пластиков, для улучшения качества реза, рекомендуется использовать встречное фрезерование.

* Для получения приемлемой шероховатости обрабатываемой поверхности, шаг между проходами фрезы/гравера необходимо делать равным или меньше рабочего диаметра фрезы(d)/пятна контакта гравера (T).

* Для улучшения качества обрабатываемой поверхности желательно не обрабатывать заготовку на всю глубину сразу, а оставить небольшой припуск на чистовую обработку.

* При резке мелких элементов необходимо снизить скорость резания, чтобы вырезанные элементы не откалывались в процессе обработки и не повреждались.

На практике

Расчётные параметры - хорошо, но учесть полностью всё, практически не возможно. Существуют более полные формулы по расчётам режимов резания, в которых используют десятки параметров. Такие формулы применяют в массовом производстве, да и то, с последующей корректировкой. В единичном производстве применяют справочные таблицы и упрощенные формулы с обязательной корректировкой под конкретные условия. Накопленный опыт, позволяет быстро выбирать рациональные режимы резания.

Теоретические основы по выбору режимов резания

Скорость вращения и скорость подачи - это основные параметры для установки режимов резанья.

Скорость вращения (n) - зависит от характеристик шпинделя, инструмента и обрабатываемого материала. Для большинства современных шпинделей обороты варьируются в диапазоне 12 000 - 24 000 об/мин (для высокоскоростных 40 000 - 60 000 об/мин).

Скорость вращения вычисляется по формуле:

d – диаметр режущей части инструмента (мм)
П – число Пи, постоянная величина = 3.14
V – скорость резания (м/мин) - это путь пройденный точкой режущей кромки фрезы в единицу времени

Для расчетов скорость резания (V) берут из справочных таблиц в зависимости от обрабатываемого материала.

Часто начинающие фрезеровщики путают скорость резанья (V) со скоростью подачи (S), но на деле это совершенно разные параметры!

Примечание:
Для фрез с малым диаметром режущей части, расчетная скорость вращения (n) может оказаться значительно выше максимальной скорости вращения шпинделя, поэтому для дальнейшего расчета скорости подачи (S) необходимо брать фактическую, а не расчетную величину скорости вращения (n).

Скорость подачи (S) – это скорость перемещения фрезы, вычисляется по формуле:

fz - подача на один зуб фрезы (мм)
z - количество зубьев
n- скорость вращения (об/мин)
Скорость врезания по оси Z (Sz) берется как 1/3 от скорости подачи по оси XY (S)

Таблица выбора скорости резания (V) и подачи на зуб (fz)

Обрабатываемый материал Скорость резания (V), м/мин Подача на зуб (fz), мм
В зависимости от диаметра фрезы d
0.5мм 1-2мм 3-4мм 5-6мм 8-10мм 12-16мм
0.02 0.06 0.15 0.20 0.30 0.40

Оргстекло

0.02 0.05 0.10 0.18 0.25 0.30
0.02 0.035 0.055 0.09 0.12 0.18

Алюминий

0.01 0.02 0.035 0.04 0.075 0.12

Латунь, Бронза

0.01 0.02 0.03 0.04 0.07 0.10
0.01 0.02 0.035 0.04 0.075 0.12
0.005 0.01 0.015 0.02 0.03 0.05
0.005 0.015 0.02 0.03 0.04 0.06
0.005 0.01 0.02 0.03 0.04 0.07

Термопласты

0.1 0.03 0.05 0.06 0.07 0.08

Стеклопластик

0.1 0.03 0.04 0.08 0.10 0.12

Примечание:Если система СПИД (Станок-Приспособление-Инструмент-Деталь) с низкой жесткостью, то величину скорости резания выбираем ближе минимальным значениям, если система СПИД имеет среднюю и высокую жесткость, то соответственно и величину выбираем ближе к средним и максимальным значениям.

  1. Фрезы подбирайте по принципу – наименьшая рабочая длина и наибольший рабочий диаметр необходимый для выполнения конкретной работы (фрезы с избыточной длиной и минимальным диаметром менее жесткие и склоны к образованию вибраций). Также при выборе диаметра фрезы учитывайте возможности станка, т.к. при использовании большого диаметра фрезы у шпинделя и привода станка может не хватить мощности
  2. Правильно выбирайте конфигурацию фрезы. Стружечная канавка должна быть больше, чем объем снимаемого материала. Если стружка не будет свободно эвакуироваться из зоны резания, она забьет канал и инструмент начнет продавливать материал, а не резать его.
  3. При обработке мягких материалов и материалов склонных к налипанию рекомендуется применять 1-заходные фрезы. Для обработки материалов средней жесткости рекомендуется применять 2-заходные фрезы. При обработке жестких материалов рекомендуется применять 3-х и более заходные фрезы.