Обозначение дб. Перевод величин из децибелов в абсолютные значения и мощность. Переход от дБ к «разам»

Что такое Децибел (dB)

Логарифмическая единица уровней, затуханий и усилений

Децибел - десятая часть бела, то есть десятая часть логарифма безразмерного отношения физической величины к одноименной физической величине, принимаемой за исходную

Децибел - это безразмерная единица, применяемая для измерения отношения некоторых величин - «энергетических» (мощности, энергии, плотности потока мощности и т. п.) или «силовых» (силы тока, напряжения и т. п.). Иными словами, децибел - это относительная величина. Не абсолютная, как, например, ватт или вольт, а такая же относительная, как кратность («трехкратное отличие») или проценты, предназначенная для измерения отношения («соотношения уровней») двух других величин, причем к полученному отношению применяется логарифмический масштаб.

Русское обозначение единицы «децибел» - «дБ», международное - «dB» (неправильно: дб, Дб). Децибел аналогичен единицам бел (Б, B) и непер (Нп, Np) и прямо пропорционален им.

Децибел не является официальной единицей в системе единиц СИ, хотя по решению Генеральной конференции по мерам и весам допускается его применение без ограничений совместно с СИ, а Международная палата мер и весов рекомендовала включить его в эту систему.

Области применения

Децибел широко применяется в любых областях техники, где требуется измерение величин, меняющихся в широком диапазоне: в радиотехнике, антенной технике, в системах передачи информации, в оптике, акустике (в децибелах измеряется уровень громкости звука) и др. Так, в децибелах принято измерять динамический диапазон (например, диапазон громкости звучания музыкального инструмента), затухание волны при распространении в поглощающей среде, коэффициент усиления и коэффициент шума усилителя.

Децибел используется не только для измерения отношения физических величин второго порядка (энергетических: мощность, энергия) и первого порядка (напряжение, сила тока). С помощью децибела можно измерять отношения любых физических величин, а также использовать децибелы для представления абсолютных величин (см. опорный уровень).

Как перейти к децибелам?

Любые операции с децибелами упрощаются, если руководствоваться правилом: величина в дБ - это 10 десятичных логарифмов отношения двух одноименных энергетических величин. Всё остальное - следствия этого правила. «Энергетические» - величины второго порядка (энергия, мощность). По отношению к ним напряжение и сила электрического тока («неэнергетические») - величины первого порядка (P ~ U^2), которые должны быть на каком-то этапе вычислений корректно преобразованы в энергетические.

Измерение «энергетических» величин

Изначально дБ использовался для оценки отношения мощностей, и в каноническом, привычном смысле величина, выраженная в дБ, предполагает логарифм отношения двух мощностей и вычисляется по формуле:

где P1/P0 - отношение значений двух мощностей: измеряемой P1 к так называемой опорной P0, то есть базовой, взятой за нулевой уровень (имеется ввиду нулевой уровень в единицах дБ, поскольку в случае равенства мощностей P1 = P0 логарифм их отношения lg(P1/P0) = 0).

Соответственно, переход от дБ к отношению мощностей осуществляется по формуле P1/P0 = 10 (0.1 · величина в дБ) , а мощность P1 может быть найдена при известной опорной мощности P0 по выражению P1 = P0 · 10 (0.1 · величина в дБ) .

Измерение «неэнергетических» величин

Из правила (см. выше) следует, что «неэнергетические» величины должны быть преобразованы в энергетические. Так, согласно закону Джоуля-Ленца P = U^2/R или P = I^2 R.

Следовательно,

где R1 - сопротивление, на котором определяется изменяемое напряжение U1, а R0 - сопротивление, на котором было определено опорное напряжение U0.

В общем случае напряжения U1 и U0 могут регистрироваться на различных по величине сопротивлениях (R1 не равно R0). Такое может быть, например, при определении коэффициента усиления усилителя, имеющего различные выходное и входное сопротивления, или при измерении потерь в согласующем устройстве, трансформирующем сопротивления. Поэтому в общем случае величина в децибелах

Только в частном (весьма распространенном) случае, если оба напряжения U1 и U0 измерялись на одном и том же сопротивлении (R1 = R0), можно пользоваться кратким выражением величина в децибелах


Децибелы «по мощности», «по напряжению» и «по току»

Из правила (см. выше) следует, что дБ бывают только «по мощности». Тем не менее, в случае равенства R1 = R0 (в частности, если R1 и R0 - одно и то же сопротивление, или в случае, если соотношение сопротивлений R1 и R0 по той или иной причине не важно) говорят о дБ «по напряжению» и «по току», подразумевая при этом выражения:

дБ по напряжению =

дБ по току =

Для перехода от «дБ по напряжению» («дБ по току») к «дБ по мощности» следует четко определить, на каких именно сопротивлениях (равных или не равных друг другу) регистрировались напряжение (ток). Если R1 не равно R0, следует пользоваться выражением для общего случая (см. выше).

при регистрации мощности изменению на +1 дБ (+1 дБ «по мощности») соответствует приращение мощности в?1.259 раза, изменению на -3.01 дБ - снижение мощности в два раза, в то время как

Переход от дБ к «разам»

Чтобы вычислить изменение «в разах» по известному изменению в дБ («dB» в формулах ниже), нужно:

для мощности:

;

для напряжения (силы тока):

Переход от дБ к мощности

Для этого нужно знать значение опорного уровня мощности P0. Например, при P0 = 1 мВт и известном изменении на +20 дБ:

Переход от дБ к напряжению (току)

Для этого нужно знать значение опорного уровня напряжения U0 и определиться, регистрировалось ли напряжение на одинаковом сопротивлении, или же для решаемой задачи различие значений сопротивлений не важно. Например, при условии R0 = R1, заданном U0 = 2 В и приросте напряжения на 6 дБ:

При некотором навыке операции с децибелами вполне реально выполнять в уме. Более того, нередко это очень удобно: вместо умножения, деления, возведения в степень и извлечения корня удается обходиться сложением и вычитанием «децибельных» единиц.

Для этого полезно помнить и научиться применять несложную таблицу:

1 дБ - в 1.25 раза,

3 дБ - в 2 раза,

10 дБ - в 10 раз.

Отсюда, раскладывая «более сложные значения» на «составные», получаем:

6 дБ = 3 дБ + 3 дБ - в 2·2 = в 4 раза,

9 дБ = 3 дБ + 3 дБ + 3 дБ - в 2·2·2 = в 8 раз,

12 дБ = 4 · (3 дБ) - в 24 = в 16 раз

и т. п., а также:

13 дБ = 10 дБ + 3 дБ - в 10·2 = в 20 раз,

20 дБ = 10 дБ + 10 дБ - в 10·10 = в 100 раз,

30 дБ = 3 · (10 дБ) - в 10^3 = в 1000 раз

Сложению (вычитанию) значений в дБ соответствует умножение (деление) самих отношений. Отрицательные значения дБ соответствуют обратным отношениям. Например:

уменьшение мощности в 40 раз - это в 4·10 раз или на -(6 дБ + 10 дБ) = -16 дБ;

увеличение мощности в 128 раз это 27 или на 7·(3 дБ) = 21 дБ;

снижение напряжения в 4 раза эквивалентно снижению мощности (величины второго порядка) в 4^2 = 16 раз; и то и другое при R1 = R0 эквивалентно снижению на 4·(-3 дБ) = -12 дБ.

Зачем использовать децибелы?

Зачем вообще применять децибелы и оперировать логарифмами, если для решения задачи в принципе можно обойтись более привычными процентами или долями? Тому есть ряд причин:

  • Характер отображения в органах чувств человека и животных изменений течения многих физических и биологических процессов пропорционален не амплитуде входного воздействия, а логарифму входного воздействия (живая природа живет по логарифму). Поэтому вполне естественно шкалы приборов и вообще шкалы единц устанавливать именно в логарифмические, в том числе, используя децибелы. Например музыкальная равномерно темперированная шкала частот является одной из таких логарифмических шкал.
  • Удобство логарифмической шкалы в тех случаях, когда в одной задаче приходится оперировать одновременно величинами, различающимися не во втором знаке после запятой, а в разы и, тем более, различающимися на много порядков (примеры: задача выбора графического отображения уровней сигнала, частотных диапазонов радиоприемников и др. звуковоспроизводящих устройств, расчет частот для настройки клавиатуры фортепьяно, расчеты спектров при синтезе и обработке музыкальных и других гармонических звуковых, световых волн, графические отображения скоростей в космонавтике, авиации, в скоростном транспорте, графическое отображения других переменных величин, изменения которых в широком диапазоне величин являются критически важными...).
  • Удобство отображения и анализа величины, изменяющейся в очень широких пределах (пример - диаграмма направленности антенны, график движений курса валют за год,...).

Условные обозначения

Для различных физических величин одному и тому же числовому значению, выраженному в децибелах, могут соответствовать разные уровни сигналов (вернее разности уровней). Поэтому во избежание путаницы такие «конкретизированные» единицы измерения обозначают теми же буквами «дБ», но с добавлением индекса - общепринятого обозначения измеряемой физической величины. Например «дБВ» (децибел относительно вольта) или «дБмкВ» (децибел относительно микровольта), «дБВт» (децибел относительно ватта) и т. п. В соответствии с международным стандартом МЭК 27-3 при необходимости указать исходную величину ее значение помещают в скобках за обозначением логарифмической величины, например для уровня звукового давления: LP (re 20 µPA) = 20 dB; LP (исх. 20 мкПа) = 20 дБ

Опорный уровень

Децибел служит для определения отношения двух величин. Но нет ничего удивительного в том, что децибел используют и для измерения абсолютных значений. Для этого достаточно условиться, какой уровень измеряемой физической величины будет принят за опорный уровень (условный 0 дБ).

Строго говоря, должно быть однозначно определено, какая именно физическая величина и какое именно ее значение используются в качестве опорного уровня. Опорный уровень указывается в виде «добавки», следующей за символами «дБ» (например, «дБм»), либо опорный уровень должен быть ясен из контекста (например, «дБ относительно 1 мВт»).

На практике распространены следующие опорные уровни и специальные обозначения для них:

dBm (русское дБм) - опорный уровень - это мощность в 1 мВт. Мощность обычно определяется на номинальной нагрузке (для профессиональной техники - обычно 10 кОм для частот менее 10 МГц, для радиочастотной техники - 50 Ом или 75 Ом). Например, «выходная мощность усилительного каскада составляет 13 дБм» (то есть мощность, выделяющаяся на номинальной для этого усилительного каскада нагрузке, составляет 20 мВт)..

dBV (русское дБВ) - опорное напряжение 1 В на номинальной нагрузке (для бытовой техники - обычно 47 кОм); например, стандартизованный уровень сигнала для бытового аудиооборудования составляет -10 дБВ, то есть 0.316 В на нагрузке 47 кОм.

dBuV (русское дБмкВ) - опорное напряжение 1 мкВ; например, «чувствительность радиоприёмника, измеренная на антенном входе - -10 дБмкВ … номинальное сопротивление антенны - 50 Ом».

dBu - опорное напряжение 0,775В, соответствующее мощности 1мВт на нагрузке 600?; например, стандартизованный уровень сигнала для профессионального аудиооборудования составляет +4dBu, то есть 1.23В.

dBm0 (русское дБм0) - опорная мощность в дБм в точке нулевого относительного уровня. «Абсолютный уровень мощности относительно 1 мВт в точке линии передачи с нулевым уровнем»

dBFS (англ. Full Scale - «полная шкала») - опорное напряжение соответствует полной шкале прибора; например, «уровень записи составляет -6dBfs». Для линейного цифрового кода каждый разряд соответствует 6дБ, и максимально возможный уровень записи равен 0dBFS.

dBSPL (англ. Sound Pressure Level - «уровень звукового давления») - опорное звуковое давление 20мкПа, соответствующее порогу слышимости; например, «громкость 100dBSPL».

dBPa - опорное звуковое давление 1Па или 94дБ звуковой шкалы громкости dBSPL; например, «для громкости 6dBPa микшером установили +4dBu, а регулятором записи -3dBFS, искажения при этом составили -70dBc».

dBA, dBB, dBC, dBD - опорные уровни выбраны в соответствии с частотными характеристиками «весовых фильтров» в соответствии с кривыми равной громкости.

dBc (русское дБн) - опорным является уровень излучения на частоте несущей (англ. carrier) или уровень основной гармоники в спектре сигнала. Примеры использования: «уровень побочного излучения радиопередатчика на частоте второй гармоники составляет -60 дБн» (то есть мощность этого побочного излучения в 1 млн раз меньше мощности несущей) или «уровень искажений составляет -60 дБн».

dBi (русское дБи) - изотропный децибел (децибел относительно изотропного излучателя). Характеризует коэффициент направленного действия (а также коэффициент усиления) антенны относительно коэффициента направленного действия изотропного излучателя. Как правило, если не оговорено специально, характеристики усиления реальных антенн даются именно относительно усиления изотропного излучателя. То есть, когда вам говорят, что коэффициент усиления какой-то антенны равен 12 децибел, подразумевается 12 дБи.

dBd (русское дБд) - децибел относительно полуволнового вибратора («относительно диполя»). Характеризует коэффициент направленного действия (а также коэффициент усиления) антенны относительно коэффициента направленного действия полуволнового вибратора, размещенного в свободном пространстве. Поскольку коэффициент направленного действия указанного полуволнового вибратора приближенно равен 2.15 дБи, то 1 дБд = 2.15 дБи.

По аналогии образуются составные единицы измерений. Например, уровень спектральной плотности мощности дБВт/Гц - «децибельный» аналог единицы измерения Вт/Гц (мощность, выделяющаяся на номинальной нагрузке в полосе частот шириной в 1 Гц с центром на указанной частоте). Опорным уровнем в данном примере является 1 Вт/Гц, то есть физическая величина «спектральная плотность мощности», ее размерность «Вт/Гц» и значение «1». Так, запись «-120 дБВт/Гц» полностью эквивалентна записи «10-12 Вт/Гц».

В случае затруднения во избежание путаницы достаточно указать опорный уровень явно. Например, запись -20 дБ (относительно 0.775 B на нагрузке 50 Ом) исключает двойное толкование.

Справедливы следующие правила (следствие правил действий с размерными величинами):

перемножать или делить «децибельные» значения нельзя (это бессмысленно);

суммирование «децибельных» значений соответствует умножению абсолютных значений, вычитание «децибельных» значений - делению абсолютных значений;

суммирование или вычитание «децибельных» значений может выполняться независимо от их «исходной» размерности. Например, равенство 10 дБм + 13 дБ = 23 дБм является корректным, полностью эквивалентно равенству 10 мВт · 20 = 200 мВт и может трактоваться как «усилитель с коэффициентом усиления 13 дБ увеличивает мощность сигнала с 10 дБм до 23 дБм».

Следует аккуратно использовать знак «минус», поскольку цена ошибки со знаком в операциях с децибелами - не «в два раза», а «на много порядков». Например, из записи «входной уровень - 10 дБм» не ясно, идёт ли речь о «+10 дБм» или же о «минус 10 дБм». В зависимости от ситуации лучше писать: «входной уровень +10 дБм», «входной уровень: 10 дБм», «входной уровень минус 10 дБм».

Громкость звука. Уровень шума и его источники

Физическая характеристика громкости звука - уровень звукового давления, в децибелах (дБ). «Шум» - это беспорядочное смешение звуков.

Звуки с низкой и высокой частотой кажутся тише, чем среднечастотные той же интенсивности. С учётом этого, неравномерную чувствительность

человеческого уха к звукам разных частот модулируют с помощью специального электронного частотного фильтра, получая, в результате нормирования

измерений, так называемый эквивалентный (по энергии, "взвешенный") уровень звука с размерностью дБА (дБ(А), то есть - с фильтром "А").

Человек может слышать звуки громкостью от 10-15 дБ и выше. Максимальный диапазон частот для человеческого уха - от 20 до 20 000 Гц. Лучше

слышен звук с частотой 3-4 КГц (обычен в телефонах и по радио на СВ и ДВ диапазонах). С возрастом, воспринимаемый на слух звуковой диапозон

сужается, особенно для высокочастотных звуков, уменьшаясь до 18 килогерц и менее.

В случае отсутствия на стенах помещений звукопоглощающих материалов (ковров, специальных покрытий), звук будет громче из-за многократного

отражения (реверберации, то есть - эха от стен, потолка и мебели), что увеличит уровень шума на несколько децибел.

Шкала шумов (уровни звука, Децибел (dB)):

0 Ничего не слышно

5 Почти не слышно

10 Почти не слышно тихий шелест листьев

15 Едва слышно шелест листвы

20 Едва слышно шепот человека (1м).

25 Тихо шепот человека (1м)

30 Тихо шепот, тиканье настенных часов.

Норма для жилых помещений ночью, с 23 до 7 ч.

35 Довольно слышно приглушенный разговор

40 Довольно слышно обычная речь.

Норма для жилых помещений, с 7 до 23 ч.

45 Довольно слышно обычный разговор

50 Отчётливо слышно разговор, пишущая машинка

55 Отчётливо слышно Норма для офисных помещений класса А (по европейским нормам)

60 Шумно Норма для контор

65 Шумно громкий разговор (1м)

70 Шумно громкие разговоры (1м)

75 Шумно крик, смех (1м)

80 Очень шумно крик, мотоцикл с глушителем.

85 Очень шумно громкий крик, мотоцикл с глушителем

90 Очень шумно громкие крики, грузовой железнодорожный вагон (в семи метрах)

95 Очень шумно вагон метро (7м)

100 Крайне шумно оркестр, вагон метро (прерывисто), раскаты грома

Максимально допустимое звуковое давление для наушников плеера (по европейским нормам)

105 Крайне шумно в самолёте (до 80-х годов ХХ столетия)

110 Крайне шумно вертолёт

115 Крайне шумно пескоструйный аппарат (1м)

120 Почти невыносимо отбойный молоток (1м)

125 Почти невыносимо

130 Болевой порог самолёт на старте

135 Контузия

140 Контузия звук взлетающего реактивного самолета

145 Контузия старт ракеты

150 Контузия, травмы

155 Контузия, травмы

160 Шок, травмы ударная волна от сверхзвукового самолёта

При уровнях звука свыше 160 дБ возможен разрыв барабанных перепонок и лёгких, больше 200 - смерть

Максимально допустимые уровни звука (LАмакс, дБА) - больше "нормальных" на 15 децибел. Например, для жилых комнат квартир допустимый

постоянный уровень звука в дневное время - 40 децибелов, а временный максимальный - 55.

Неслышный шум - звуки с частотами менее 16-20 Гц (инфразвук) и более 20 КГц (ультразвук). Низкочастотные колебания в 5-10 герц могут вызывать

резонанс внутренних органов и влиять на работу мозга. Низкочастотные акустические колебания усиливают ноющие боли в костях и суставах у

больных. Источники инфразвука: автомобили, вагоны, гром от молнии и т.д. Высокочастотные колебания вызывают нагрев тканей. Эффект зависит от

силы звука, расположения и свойств его источников.

На рабочих местах предельно допустимые эквивалентные уровни звука для прерывистого шума: максимальный уровень звука не должен превышать 110

дБА, а для импульсного шума - 125 дБАI. Запрещается даже кратковременное пребывание в зонах с уровнями звукового давления свыше 135 дБ в любой

октавной полосе.

Шум, издаваемый компьютером, принтером и факсом в комнате без звукопоглощающих материалов - может превышать уровень 70 db. Поэтому не

располагаются рабочие места.

Снизить уровень шума можно, если использовать шумопоглощающие материалы в качестве отделки помещения и занавески из плотной ткани. Помогут и

противошумные бируши для ушей.

При возведении зданий и сооружений, в соответствии с современными, более жесткими требованиями звукоизоляции, должны применяться технологии и

материалы, способные обеспечить надёжную защиту от шума.

Для пожарной сигнализации: уровень звукового давления полезного аудиосигнала, обеспечиваемый оповещателем, должен быть не менее 75 дБА на

расстоянии 3 м от оповещателя и не более 120 dba в любой точке защищаемого помещения (п.3.14 НПБ 104-03).

Сирена большой мощности и корабельный ревун - давит больше 120-130 децибел.

Спецсигналы (сирены и "крякалки" - Air Horn), устанавливаемые на служебном транспорте, регламентируются ГОСТ Р 50574 - 2002. Уровень звукового

давления сигнального устройства при подаче специального звук. сигнала, на расстоянии 2 метра по оси рупора, должен быть не ниже:

116 дБ(А) - при установке излучателя звука на крыше транспортного средства;

122 дБА - при установке излуч-ля в подкапотное пространство автотранспорта.

Изменения основной частоты должны быть от 150 до 2000 Гц. Продолжительность цикла - от 0,5 до 6,0 с.

Клаксон гражданского автомобиля, согласно ГОСТ Р 41.28-99 и Правил ЕЭК ООН №28, должен издавать непрерывный и монотонный звук с уровнем

акустического давления не более 118 децибел. Такого порядка максимально допустимые значения - и для автосигнализации.

Если городской житель, привыкший к постоянному шуму, окажется на некоторое время в полной тишине (в сухой пещере, например, где уровень шума -

менее 20 db), то он вполне может испытать депрессивные состояния вместо отдыха.

Очень часто новички сталкивается с таким понятием, как децибел . Многие из них интуитивно догадываются, что это такое, но у большинства до сих пор возникают вопросы.

Относительные логарифмические единицы Белы (децибелы) широко используются при количественных оценках параметров различных аудио, видео, измерительных устройств. Физическая природа сравниваемых мощностей может быть любой - электрической, электромагнитной, акустической, механической, - важно лишь, чтобы обе величины были выражены в одинаковых единицах - ваттах, милливаттах и т. п. Бел выражает отношение двух значений энергетической величины десятичным логарифмом этого отношения, причем под энергетическими величинами понимаются: мощность, энергия.

Кстати, эта единица получила свое название в честь Александра Белл (1847 – 1922) – американского ученого шотландского происхождения, основоположника телефонии, основателя всемирно известных компаний AT&T и “Bell Laboratories”. Еще интересно напомнить, что во многих современных мобильных телефонах (смартфонах) обязательно есть выбираемый звук звонка (оповещения), так и называемый “bell”. Впрочем, Бел относится к единицам, не входящим в Международную систему единиц (СИ), но в соответствии с решением Международного комитета мер и весов допускается к применению без ограничений совместно с единицами СИ. В основном применяется в электросвязи, акустике, радиотехнике.

Формулы для вычисления децибелов

Бел (Б) = lg (P2/P1)

где

На практике, оказалось, что удобнее пользоваться уменьшенным в 10 раз значением Бел, т.е. децибел, поэтому:

дециБел (дБ) = 10 * lg(P2/P1)

Усиление или ослабление мощности в децибелах выражается формулой:

где

P 1 – мощность до усиления, Вт

P 2 – мощность после усиления или ослабления, Вт

Значения Бел, децибел могут быть со знаком “плюс”, если P2 > P1 (усиление сигнала) и со знаком “минус”, если P2 < P1 (ослабление сигнала)

Во многих случаях, сравнение сигналов путем измерения мощностей может быть неудобным или невозможным – проще измерить напряжение или ток.
В этом случае, если мы сравниваем напряжения или токи, формула примет уже другой вид:


где

N дБ – усиление, либо ослабление мощности в децибелах

U 1 – это напряжение до усиления, В

I 1 – сила тока до усиления, А

I 2 – сила тока после усиления, А

Вот небольшая табличка, в которой приведены основные отношения напряжений и соответствующее число децибел:

Дело в том, что операции умножения и деления над числами в обычном базисе, заменяются операциями сложения и вычитания в логарифмическом базисе. Например, у нас есть два каскадно-включенных усилителя с коэффициентами усиления K1 = 963 и K2 = 48. Какой общий коэффициент усиления? Правильно – он равен произведению K = K1 * K2. Вы можете в уме быстро вычислить 963*48? Я – нет. Я могу прикинуть K = 1000*50 = 50 тыс., не более. А, если нам известно, что K1 = 59 дБ и K2 = 33 дБ, то К = 59+33 = 92 дБ – сложить было не трудно, надеюсь.

Впрочем, актуальность таких вычислений было велика в эпоху, когда ввели понятие Бел и когда не было не то, что айфонов, но и электронных калькуляторов. Сейчас же достаточно открыть калькулятор на ваших гаджетах и быстренько посчитать, что есть что. Ну и чтобы не париться каждый раз при переводе дБ в разы, удобнее всего найти в интернете онлайн-калькулятор. Да хотя бы вот .

Закон Вебера-Фехнера

Почему именно децибелы? Все исходит от закона Вебера-Фехнера, который говорит нам, что интенсивность ощущения человеческих чувств прямо-пропорциональна логарифму интенсивности какого-либо раздражителя.


Так светильник, в котором восемь лампочек, кажется нам настолько же ярче светильника из четырёх лампочек, насколько светильник из четырёх лампочек ярче светильника из двух лампочек. То есть количество лампочек должно увеличиваться каждый раз вдвое, чтобы нам казалось, что прирост яркости постоянен. То есть если добавить к нашим 32 лампочкам на графике еще одну лампочку, то мы даже и не заметим разницы. Для того, чтобы для нашего глаза была заметна разница, мы должны к 32 лампочкам добавить еще 32 лампочки, и т.д. Или иными словами, для того, чтобы нам казалось, что наш светильник плавно набирает яркость, нам надо зажигать вдвое больше лампочек каждый раз, чем было предыдущее значение.

Поэтому децибел действительно удобнее в некоторых случаях, так как сравнивать две величины намного проще в маленьких цифрах, чем в миллионах и миллиардах. А так как электроника – это чисто физическое явление, то и децибелы не обошли ее стороной.

Децибелы и АЧХ усилителя

Как вы помните в прошлом примере с ОУ, у нас неинвертирующий усиливал сигнал в 10 раз. Если посмотреть в нашу табличку, то это получается 20 дБ относительно входного сигнала. Ну да, так оно и есть:


Также в дБ на некоторых графиках АЧХ обозначают наклон характеристики АЧХ. Это может выглядеть примерно вот так:


На графике мы видим АЧХ полосового фильтра. Изменение сигнала +20 дБ на декаду (дБ/дек, dB/dec) говорит нам о том, что при каждом увеличении частоты в 10 раз, амплитуда сигнала возрастает на 20 дБ. То же самое можно сказать и про спад сигнала -20 дБ на декаду. При каждом увеличении частоты в 10 раз, у нас амплитуда сигнала будет уменьшаться на -20 дБ. Есть также похожая характеристика дБ на октаву (дБ/окт, dB/oct). Здесь почти все то же самое, только изменение сигнала происходит при каждом увеличении частоты в 2 раза.

Давайте рассмотрим пример. Имеем фильтр высоких частот (ФВЧ) первого порядка, собранного на RC-цепи.


Его АЧХ будет выглядеть следующим образом (кликните для полного открытия)


Нас сейчас интересует наклонная прямая линия АЧХ. Так как у нее наклон примерно одинаковый до частоты среза в -3дБ, то можно найти ее крутизну, то есть узнать, во сколько раз увеличивается сигнал при каждом увеличении частоты в 10 раз.

Итак возьмем первую точку на частоте в 10 Герц. На частоте в 10 Герц амплитуда сигнала уменьшилась на 44 дБ, это видно в правом нижнем углу (out:-44)


Умножаем частоту на 10 (декада) и получаем вторую точку в 100 Герц. На частоте в 100 Герц наш сигнал уменьшился приблизительно на 24 дБ


То есть получается за одну декаду у нас сигнал увеличился с -44 до -24 дБ на декаду. То есть наклон характеристики составил +20 дБ/декаду. Если +20 дБ/декаду перевести в дБ на октаву, то получится 6 дБ/октаву.

Достаточно часто, дискретные аттенюаторы (делители) выходного сигнала на измерительных приборах (особенно на генераторах) проградуированы в децибелах:
0, -3, -6, -10, -20, -30, -40 дБ. Это позволяет быстро ориентироваться в относительном уровне выходного сигнала.


Что еще измеряют в децибелах?

Также очень часто в дБ выражают (signal-to-noise ratio , сокр. SNR)


где

U c – это эффективное значение напряжения сигнала, В

U ш – эффективное значение напряжения шума, В

Чем выше значение сигнал/шум, тем более чистый звук обеспечивается аудиосистемой. Для музыкальной аппаратуры желательно, чтобы это отношение было не менее 75 дБ, а для Hi-Fi аппаратуры не менее 90 дБ. Не имеет значение физическая природа сигнала, важно, чтобы единицы были в одинаковых измерениях.

В качестве единицы логарифмического отношения двух одноимённых физических величин применяется также непер (Нп) - 1 Нп ~ 0,8686 Б. В основе лежит не десятичный (lg), а натуральный (ln) логарифм отношений. В настоящее время используется редко.

Во многих случаях, удобно сравнивать между собой не произвольные величины, а одну величину относительно другой, названной условно опорной (нулевой, базовой).
В электротехнике, в качестве такой опорной или нулевой величины выбрано значение мощности равное 1 мВт выделяемое на резисторе сопротивлением 600 Ом.
В этом случае, базовыми значениями при сравнении напряжений или токов станут величины 0.775 В или 1.29 мА.

Для звуковой мощности такой базовой величиной является 20 микроПаскаль (0 дБ), а порог +130 дБ считается болевым для человека:


Более подробно об этом написано в Википедии по этой ссылке.

Для случаев когда в качестве базовых значений используются те или иные конкретные величины, придуманы даже специальные обозначения единиц измерений:

dbW (дБВт) – здесь отсчет идет относительно 1 Ватта (Вт). Например, пусть уровень мощности составил +20 дБВт. Это значит что мощность увеличилась в 100 раз, то есть на 100 Вт.

dBm (дБм) – здесь у нас отсчет уже идет относительно 1 милливатта (мВт). Например, уровень мощности в +30дБм будет соответственно равен 1 Вт. Не забываем, что это у нас энергетические децибелы, поэтому для них будет справедлива формула

Следующие характеристики – это уже амплитудные децибелы. Для них будет справедлива формула

dBV (дБВ) – как вы догадались, опорное напряжение 1 Вольт. Например, +20дБВ даст – это 10 Вольт

От дБВ также вытекают другие виды децибелов с разными приставками:

dBmV (дБмВ) – опорный уровень 1 милливольт.

dBuV (дБмкВ) – опорное напряжение 1 микровольт.

Здесь я привел наиболее употребимые специальные виды децибелов в электронике.

Децибелы используются и в других отраслях, где они также показывают отношение каких-либо двух измеряемых величин в логарифмическом масштабе.

Также на YouTube есть интересное видео о децибелах.

При участии Jeer

Ю.БАЛТИН (YL2DX),

Когда требуется сравнить какие-нибудь величины, это можно сделать по-разному. Можно, например, разделив эти величины одну на другую, сказать - Р 1 больше чем Р 2 в 3 раза, или Р 1 , меньше чем Р 2 в 28 раз. Если нам понадобится далее вести какие-то расчеты, мы будем пользоваться отвлеченными числами 3, или 28, или 1/28 (иногда для уточнения добавляя слово "раз").

В ряде случаев для расчетов или для большей наглядности сравнения оказывается удобнее логарифмировать отношение величин и оперировать далее с числом log а (Р 1 /Р 2 ). Известно, что применение логарифмов упрощает математические расчеты, в частности, позволяет вместо умножения и деления пользоваться сложением и вычитанием. При большом диапазоне изменений какой-либо величины логарифмический масштаб позволяет лучше разглядеть на одном и том же графике и малые, и большие ее относительные изменения.

Чтобы различать, имеем ли мы дело с числом "раз" или с его логарифмом, а также чтобы зафиксировать, каким основанием мы пользуемся при логарифмировании (числом 10, числом e=2,71828 или иным), следует присвоить этому логарифму какое-нибудь название. В системе СИ в качестве относительной логарифмической единицы отношения мощностей Р 1 , и Р 2 принят десятичный логарифм Ig(Р 1 /Р 2 ). Эта единица называется бел (Б).

На практике этой довольно крупной единицей оказалось не очень удобно оперировать, поэтому ее "разменивают" на единицы, в десять раз меньшие - децибелы. Соотношение двух уровней мощности Р 1 и Р 2 в децибелах (дБ, или dB) выражают по следующей формуле:

Множитель 10 в формуле (1) появился потому, что десять децибел как раз и есть один бел. Таким образом, не повезло изобретателю телефона А.Г.Беллу - мало того, что единицу его имени укоротили на одну букву "л", так еще и пользуются лишь десятыми долями.

Теперь разберемся с отношениями напряжений или токов. Вспомним из школьного курса, что мощность в линейной цепи равна:

Отсюда легко видеть, что:

а значит:

Из школьного же курса вспомним:

Из равенств (2) и (3) вытекает следующее:

Это и есть формула взаимосвязи между "белами по мощности" и "белами по напряжению" в одной и той же цепи, если в ней выполняется закон Ома. Ну, а если мы намерены пользоваться десятыми долями бела, то обе половины этого уравнения необходимо умножить на 10. Отсюда следует, что при сравнении величин напряжений (U 1 и U 2) или токов (I 1 и l 2), их соотношение в децибелах:

Полезно запомнить несколько характерных значений, приведенных в таблице.

Если напряжение на резисторе увеличить вдвое (на +6 дБ "по напряжению"), то и протекающий через него ток увеличится вдвое (на +6 дБ "по току"), а мощность, выделяемая этим резистором, станет вчетверо больше-опять-таки на +6 дБ ("по мощности"). Чтобы уменьшить мощность в 10 раз (-10 дБ), нужно снизить приложенное к резистору напряжение в 3,162 раза (-10 дБ), отчего ток по закону Ома тоже уменьшится в 3,162 раза (-10 дБ).

Поскольку мощность в линейной цепи пропорциональна квадрату напряжения или тока, численные значения соотношений их величин, выраженные в децибелах, остаются одними и теми же как при сравнении мощностей, так и при сравнении напряжений или токов:

В случае ослабления сигнала (когда отношение Р 1 /Р 2 меньше единицы), логарифм становится отрицательным, следовательно, отрицательным становится и коэффициент передачи данной цепи, выраженный в децибелах. Для вычисления общего коэффициента передачи нескольких последовательно соединенных цепей или устройств достаточно просуммировать значения в децибелах с учетом их знаков (+) или (-). Это

намного удобнее, чем перемножать исходные значения в разах.

При вычислении коэффициента передачи различных устройств (например, усилительного каскада) во многих случаях мы имеем дело с разными входным и выходным сопротивлениями; в нелинейных цепях напряжение и ток взаимно не пропорциональны, а мощность не связана с тем и другим квадратичной зависимостью. Коэффициенты передачи таких цепей по току:

и по напряжению:

различны и в разах, и в децибелах; коэффициент передачи по мощности:

а в децибелах:

поскольку

Равенство (6) к этим случаям не относится, но по отдельности изменения или соотношения величин тока или напряжения на одном и том же линейном сопротивлении (например, на сопротивлении нагрузки нелинейного усилителя) все равно выражаются в децибелах формулами (4) и (5), а изменения уровня мощности - формулой (1).

Зачем возиться с логарифмами? Во-первых, логарифмическая шкала наиболее естественна для наших органов чувств, в частности, для слуха. Закон логарифмической зависимости ощущений от силы воздействия сформулирован Вебером и Фехнером (обычно называется законом Вебера) - "одинаковые относительные изменения раздражающей силы вызывают одинаковые приращения слухового ощущения, т.е. слуховое ощущение пропорционально логарифму раздражающей силы".

Практически, 1 дБ - это наименьшая ступенька изменения интенсивности звука, едва обнаруживаемая на слух, изменение на 6 дБ воспринимается на слух как хорошо заметное (но небольшое - примерно вдвое громче), на 10 дБ - значительное, а на 20 дБ-как весьма большое. Каждый балл по шкале S системы RST - это 6 дБ (или 0,6 бела), так что мы, особо не задумываясь, занимаемся логарифмированием каждый раз, когда начинаем очередную связь в эфире, передавая рапорт корреспонденту.

Во-вторых, значения величин, с которыми нередко приходится сталкиваться, в обычном исчислении бывает трудно соразмерить-скажем, 1 микровольт отличается от 1 киловольта в 1 000 000 000 раз. А в децибелах разница выражается вполне удобной величиной 180 дБ. Мощности, которые выделятся на одном и том же сопротивлении при приложении к нему этих напряжений, будут отличаться астрономически - в 1 000 000 000 000 000 000 раз, а в децибелах - все на те же 180 дБ. С другой стороны, если, например, сравнивать 1,03 мА и 1,37 мА, то их отличие выразится вполне заметной величиной - 2,5 дБ.

Децибелы

(-1)

(-3)

(-6)

(-10)

(-20)

(-40)

(-60)

Отношение мощностей P 1 /P 2

1,26 (0,79)

(0,5)

(0,25)

(0,1)

(0,01)

10 4

(10 -4)

(10 -6)

Отношение напряжений или токов U 1 /U 2 или I 1 /I 2

1,12

(0,89)

1,41

(0,707)

(0,5)

3,16

(0,316)

(0,1)

(0,01)

1000

(10 -3)

Если запомнить характерные значения из таблицы, то можно очень легко пересчитывать в уме и любые другие величины отношений в децибелы и обратно. Например, 4 дБ-это (3 дБ +1 дБ). Значит, отношение мощностей (2x1,26)= 2,52 раза или отношение напряжениий (1,41 х 1,12) =1,6 раза. Или, к примеру, отношение двух значений тока равно 17 раз, то есть (10x1,7). 10 раз по току - это 20 дБ, а 1,7 раза - между 1,41 и 2, значит, где-то около 4,5 дБ. В сумме (20 дБ + 4,5 дБ) = 24,5 дБ. Ну, а для чисел, кратных десяти, мнемоника очевидна.

Децибелы сами по себе - это величины не физические, а абстрактные, математические, такие же относительные, как и разы. Их нельзя пощупать руками как килограмм, метр или киловольт (нет... руками его, пожалуй, не стоит щупать... Hi). Их можно только вычислить, сравнивая реальные физические величины, и оперировать ими при расчетах. Но если мы устанавливаем в качестве эталона 0 дБ какое-то определенное значение физической величины, например, 1 Вт или 1 мкВ, то можем и прямо измерять в децибелах относительно него уровни мощности или, соответственно, напряжения. Обозначают такие единицы измерения теми же буквами "дБ", но с добавлением индекса: дБВт (децибел-ватт), дБмкВ (децибел-микровольт) и т.п. Например, мощность 27 дБВт-это то же самое, что 500 Вт, а -13 дБВт - 50 мВт. Напряжение -3 дБмкВ - 0,707 мкВ, а 23 дБмкВ - 14,14 мкВ.

В акустике за 0 дБ однозначно принято пороговое звуковое давление 2-10 Па, и децибел без дополнительного индекса прямо используется в качестве единицы уровня звукового давления.

На коротких волнах, по системе оценки сигнала RST, напряжение, равное 50 мкВ, на 50-омном входе приемника (S=9), в сущности, принято за ноль децибел. Каждый балл ниже девяти - это -6 дБ (в 2 раза меньше) от этого напряжения, а если сигнал сильнее, то S-метр покажет, на сколько децибел. Чтобы напряжение на входе приемника изменилось на 1 балл, нужно на столько же изменить мощность передатчика - на 6 дБ, то есть в 4 раза. Если получен RS 59+20 dB, то можно (и нужно бы!) смело уменьшать мощность передатчика на 30 дБ (т.е. в 1000 раз!!!) - все равно будет слышно достаточно громко - больше чем на S=7 (с запасом +2 дБ) (конечно, если "+20" было сказано не ради красного словца.. .Hi).

Надеюсь, что теперь понятно, почему "выжимать" 250 Вт из 200-ваттного передатчика просто глупо - увеличение силы сигнала менее чем на 1 дБ вообще никто не заметит, а вот сплэттер или щелчки по всему диапазону вполне реально могут испортить настроение многим.

О чувствительности приемника и S-метра

Чувствительность приемников часто измеряют в децибел-милливаттах (дБм) или дБмВт: 1 мВт = 0 дБм.

В сущности, измерять чувствительность в единицах мощности имеет больше смысла, чем в единицах напряжения, так так нам приходится иметь дело с сигналами разной формы - синусоидальными, шумовыми, шумоподобными и др. К тому же, мы избавляемся от необходимости уточнять, каково входное сопротивление приемника, и имеем возможность сравнивать чувствительность приемников с различными входными сопротивлениями. Эффективное напряжение 50 мкВ на 50-омном входе соответствует мощности -73 дБм. Этой же мощности соответствует напряжение 61,2 мкВ на 75-омном входе. Все это соответствует оценке S=9 сигнала по системе RST на частотах ниже 30 МГц. На УКВ за S=9 принята мощность -93 дБм (5 мкВ на 50-омном входе приемника).

Система оценки сигнала на слух по коду RST была предложена W2BSR в середине 30-х годов и с тех пор стала всемирно признанной. Стандарт градуировки S-метров был установлен IARU в 60-х годах, но когда его принимали, похоже, что ориентировались на не очень чувствительные приемники, а может быть, и на "тугоухих" операторов... (Hi). Впрочем, в те годы еще широко использовалась амплитудная модуляция (AM), в CW-приемниках сравнительно редко встречались хорошие узкополосные фильтры, а собственные шумы радиодеталей были побольше чем сейчас, так что чувствительность среднего любительского приемника была на порядок хуже, чем у современного.

Пороговая чувствительность порядка -130 дБм - очень высокая, но не редкая для современного КВ-приемника при узкой полосе в режиме CW (0,035 мкВ на 50-омном входе). Эта величина ниже, чем S=1 (-121 дБм) по S-метру. При таких уровнях имеется несоответствие слуховой (по таблице значений "S") и инструментальной (по S-метру) оценки силы сигнала - в чистом эфире, без помех, на хорошем приемнике сигнал с уровнем -125 или -130 дБм может вполне восприниматься на слух как хорошо читаемый "слабый", или "очень слабый" т.е. S=3 или S=2, a S-метр не будет показывать ничего. Но, по сути системы RST, если S=0, то сигнала просто не слышно совсем, a S=1 - это, по определению, "едва ощутимый сигнал". В тех же условиях сигнал мощностью -85 дБм может выглядеть как очень громкий (при достаточном коэффициенте усиления УНЧ приемника), но S-метр покажет не 9, а только 7 баллов - это типично, например, на 10-метровом диапазоне (впрочем, он как раз на границе KB и УКВ, где шкалы S-метров разные).

В трансиверах разных фирм стандарт IARU не очень-то соблюдается. Кроме того, чувствительность одного и того же приемника на разных диапазонах различается и может ступенчато регулироваться оператором (включением или выключением преду-силителей ВЧ и аттенюаторов), а шкала S-метра остается одна на все случаи. Если включен аттенюатор, то следует величину его затухания прибавить к показаниям S-метра, а если включен дополнительный пре-дусилитель - то величину его усиления из показаний S-метра вычесть. Разумеется, это относится только к случаю использования для приема полноразмерных согласованных антенн. Когда действующая высота антенны мала, или антенна не согласована со входом приемника, показания S-метра сами по себе ничего не скажут о реальном уровне сигнала в эфире.

В сущности, единственной полной и действительно объективной характеристикой уровня сигнала, создаваемого каким-либо передатчиком в точке приема, является напряженность поля, которую можно вычислить, разделив ЭДС на клеммах приемной антенны U A на ее действующую высоту h д:

КВ и УКВ №4, 2001 г.

И т. п., поэтому отношение D F {\displaystyle D_{F}} двух значений силовой величины F {\displaystyle F}

D F = 20 lg ⁡ F 1 F 0 . {\displaystyle D_{F}=20\lg {\frac {F_{1}}{F_{0}}}.}

Отсюда следует, что увеличение силовой величины на 1 дБ означает её увеличение в 10 0 , 05 {\displaystyle 10^{0,05}} ≈ 1,122 раза.

Децибел относится к единицам, не входящим в Международную систему единиц (СИ) , но в соответствии с решением Международного комитета мер и весов допускается к применению без ограничений совместно с единицами СИ . В основном применяется в электросвязи , акустике , радиотехнике , в теории систем автоматического управления

Энциклопедичный YouTube

    1 / 1

    ✪ Что такое децибел

Субтитры

История

Распространение децибела берёт начало от методов, используемых для количественной оценки потери (ослабления) сигнала в телеграфных и телефонных линиях. Единицей потерь изначально была миля стандартного кабеля (англ. mile of standard cable - m.s.c.). 1 m.s.c. - это отношение мощностей сигнала с частотой 800 Гц на двух концах кабеля длиной в 1 милю (примерно 1,6 км), имеющего распределённое сопротивление 88 Ом (на петлю) и распределённую ёмкость 0,054 мкФ . Такое отношение мощностей, преобразованных в звуковые колебания, было близким к наименьшей различимой средним слушателем разнице двух сигналов по громкости. Однако миля стандартного кабеля была частотно-зависимой, и она не могла быть полноценной единицей отношения мощностей .

Определение

Децибелы принято использовать для измерения или выражения отношения одноимённых энергетических величин, таких как мощность, энергия, интенсивность, плотность потока мощности, спектральная плотность мощности и т. п., а также силовых величин, таких как напряжение, сила тока, напряженность поля, звуковое давление и т. п. Часто в качестве одной из величин отношения (в знаменателе) выступает общепринятая исходная (или опорная) величина. Тогда отношение, выраженное в децибелах, принято называть уровнем соответствующей физической величины (например, уровень мощности, уровень напряжения и т. д.) .

Энергетические величины

Примеры соотношений
с энергетическими и силовыми величинами
D {\displaystyle D} P 1 / P 0 {\displaystyle P_{1}/P_{0}} F 1 / F 0 {\displaystyle F_{1}/F_{0}}
40 dB 10000 100
20 dB 100 10
10 dB 10 ≈ 3,16
6 dB ≈ 4 ≈ 2
3 dB ≈ 2 ≈ 1,41
1 dB ≈ 1,26 ≈ 1,12
0 dB 1 1
−1 dB ≈ 0,79 ≈ 0,89
−3 dB ≈ 0,5 ≈ 0,71
−6 dB ≈ 0,25 ≈ 0,5
−10 dB 0,1 ≈ 0,32
−20 dB 0,01 0,1
−40 dB 0,0001 0,01

Отношение D P {\displaystyle D_{P}} двух значений энергетической величины P {\displaystyle P} и P 0 {\displaystyle P_{0}} , выраженное в децибелах, определяется по формуле:

D P = 10 lg ⁡ P 1 P 0 . {\displaystyle D_{P}=10\lg {\frac {P_{1}}{P_{0}}}.} P 1 P 0 = 10 0 , 1 D P {\displaystyle {\frac {P_{1}}{P_{0}}}=10^{0,1D_{P}}} 00 или00 P 1 = P 0 ⋅ 10 0 , 1 D P . {\displaystyle P_{1}=P_{0}\cdot 10^{0,1D_{P}}.}

Силовые величины

Энергетические величины пропорциональны квадратам силовых величин. Например, в электрической цепи мощность P {\displaystyle P} , рассеиваемая в тепло на нагрузке с сопротивлением R {\displaystyle R} при напряжении U {\displaystyle U} , определяется по формуле:

P = U 2 R . {\displaystyle P={U^{2} \over R}.}

Отсюда отношение двух величин:

P 1 P 0 = U 1 2 R 1 R 0 U 0 2 . {\displaystyle {P_{1} \over P_{0}}={U_{1}^{2} \over R_{1}}{R_{0} \over U_{0}^{2}}.}

Логарифмическое отношение в частном случае, при R 1 = R 0 {\displaystyle R_{1}=R_{0}} :

10 lg ⁡ P 1 P 0 = 10 lg ⁡ (U 1 U 0) 2 = 20 lg ⁡ U 1 U 0 . {\displaystyle 10\lg {P_{1} \over P_{0}}=10\lg {\left({U_{1} \over U_{0}}\right)}^{2}=20\lg {U_{1} \over U_{0}}.}

Таким образом, сохранение численных значений в децибелах при переходе от отношения мощностей к отношению напряжений при одинаковых нагрузках требует, чтобы выполнялось следующее соотношение:

D P = D U , {\displaystyle D_{P}=D_{U},} 00 где0 D U = 20 lg ⁡ U 1 U 0 . {\displaystyle D_{U}=20\lg {U_{1} \over U_{0}}.} U 1 U 0 = 10 0 , 05 D U {\displaystyle {\frac {U_{1}}{U_{0}}}=10^{0,05D_{U}}} 00 или00 U 1 = U 0 ⋅ 10 0 , 05 D U . {\displaystyle U_{1}=U_{0}\cdot 10^{0,05D_{U}}.}

Определение единицы бел

Бел (русское обозначение: Б; международное: B) выражает отношение двух мощностей как десятичный логарифм этого отношения .

Сравнение логарифмических единиц

Единица Обозначение Изменение энергетической
величины в … раз
Изменение силовой
величины в … раз
Пересчёт в …
дБ Б Нп
децибел дБ, dB 10 10 {\displaystyle {\sqrt[{10}]{10}}} ≈ 1,259 10 20 {\displaystyle {\sqrt[{20}]{10}}} ≈ 1,122 1 0,1 ≈0,1151
бел Б, B 10 10 {\displaystyle {\sqrt {10}}} ≈ 3,162 10 1 ≈1,151
непер Нп, Np e 2 ≈ 7,389 e ≈ 2,718 ≈8,686 ≈0,8686 1

Применение

Децибелы широко применяются в областях техники, где требуется измерение или представление величин, меняющихся в широком диапазоне: в радиотехнике, антенной технике, в системах передачи информации, автоматического регулирования и управления, в оптике, акустике (в децибелах измеряется уровень громкости звука) и др. Так, в децибелах принято измерять или указывать динамический диапазон (например, диапазон громкости звучания музыкального инструмента), затухание волны при распространении в поглощающей среде, коэффициент затухания радиочастотного кабеля, коэффициент усиления и коэффициент шума усилителя.

Акустика

Звуковое давление - силовая величина, а интенсивность звука , пропорциональная квадрату звукового давления, - энергетическая величина. Например, если громкость звука (субъективно определяемая его интенсивностью) возросла на 10 дБ, то это значит, что интенсивность звука возросла в 10 раз, а звуковое давление - приблизительно в 3,16 раза.

Использование децибелов при указании громкости звука обусловлено человеческой способностью воспринимать звук в очень большом диапазоне изменений его интенсивности. Применение линейной шкалы оказывается практически неудобным. Кроме того, на основании закона Вебера - Фехнера , ощущение громкости звука пропорционально логарифму его интенсивности. Отсюда удобство логарифмической шкалы. Диапазон величин звукового давления от минимального порога слышимости звука человеком (20 мкПа) до максимального, вызывающего болевые ощущения, составляет примерно 120 дБ. Например, утверждение «громкость звука составляет 30 дБ» означает, что интенсивность звука в 1000 раз превышает порог слышимости звука человеком.

Для выражения громкости звука также используют единицы фон и сон , учитывающие частотную и субъективную восприимчивость звука человеком.

Удобства применения децибелов

Прежде всего следует отметить удобство децибела по сравнению с единицей бел . Для практических применений бел оказался слишком крупной единицей, часто предполагающей дробную запись значения логарифмической величины. Перечисленные ниже удобства так или иначе связаны с применением не только децибелов, а логарифмической шкалы и логарифмических величин вообще.

  • Характер отображения в органах чувств человека и животных изменений течения многих физических и биологических процессов пропорционален не амплитуде входного воздействия, а логарифму входного воздействия (см. Закон Вебера - Фехнера). Эта особенность делает применение логарифмических шкал, логарифмических величин и их единиц вполне естественным. Например, одной из таких шкал является музыкальная равномерно темперированная шкала частот.
  • Логарифмическая шкала даёт наглядное графическое представление и упрощение анализа величины, изменяющейся в очень широких пределах (примеры - диаграмма направленности антенны, амплитудно-частотная характеристика (АЧХ) системы автоматического регулирования). Это же относится к передаточным частотным характеристикам электрических фильтров (см. логарифмическая амплитудно-фазовая частотная характеристика). При этом форма кривой упрощается и возможно применение кусочно-линейной аппроксимации, при которой скорость убывания частотной характеристики имеет размерность дБ/декада или дБ/октава. Упрощается анализ частотной характеристики фильтров, составленных из последовательно включенных звеньев с независимыми друг от друга частотными характеристиками. Следует заметить, что построение графиков в логарифмическом масштабе требует определённого навыка (см. Логарифмическая бумага).
  • Логарифмическое представление некоторых относительных величин в ряде случаев упрощает математические операции с ними, в частности, умножение и деление заменяются сложением и вычитанием. Например, если собственные коэффициенты усиления последовательно включённых усилителей выражены в децибелах, то общий коэффициент усиления находится как сумма собственных коэффициентов.

Опорные величины и обозначения уровней

Если в качестве одной из величин отношения (в знаменателе) выступает общепринятая исходная (или опорная) величина X ref , то отношение, выраженное в децибелах, называют уровнем (иногда называют абсолютным уровнем ) соответствующей физической величины X и обозначают L X (от англ. level ).

В соответствии с действующими стандартами , при необходимости указать исходную величину её значение помещают в скобках за обозначением логарифмической величины. Например, уровень L P звукового давления P можно записать: L P (исх. 20 мкПа) = 20 дБ, а с использованием международных обозначений - L P (re 20 µPa) = 20 dB (re - сокращение от англ. reference ). Допускается указывать значение исходной величины в скобках за значением уровня, например: 20 дБ (исх. 20 мкПа). Также используется краткая форма, например, уровень L W мощности W можно записать: L W (1 мВт) = 30 дБ, или L W = 30 дБ (1 мВт). Значение «1» исходной величины может быть опущено, например, L W = 30 дБ (мВт). То есть, если в скобках указана только размерность исходной величины, а значение величины не указано, то подразумевается, что оно равно «1». Для сокращения записи широко используются специальные обозначения, например: L W = 30 дБм. Запись означает, что уровень мощности составляет +30 дБ относительно 1 мВт, то есть мощность равна 1 Вт.

Специальные обозначения

Приведены некоторые специальные обозначения, которые в предельно краткой форме указывают на значение исходной (опорной) величины, по отношению к которой определён соответствующий уровень, выраженный в децибелах . Для указанных ниже опорных величин под электрическим напряжением понимается его среднеквадратичное (эффективное) значение.

  • dBW (русское дБВт ) - опорная мощность 1 Вт. Например, уровень мощности +30 дБВт соответствует мощности 1 кВт.
  • dBm (русское дБм ) - опорная мощность 1 мВт.
  • dBm0 (русское дБм0 ) - опорная мощность 1 мВт. Обозначение применяется в электросвязи для указания абсолютного уровня мощности, приведённого к так называемой точке нулевого относительного уровня.
  • dBV (русское дБВ ) - опорное напряжение 1 В.
  • dBuV или dBμV (русское дБмкВ ) - опорное напряжение 1 мкВ.
  • dBu (русское дБн ) - опорное напряжение 0,600 {\displaystyle {\sqrt {0{,}600}}} ≈ 0,775 В, соответствующее мощности 1 мВт на нагрузке 600 Ом.
  • dBrn - опорное напряжение соответствует мощности теплового шума идеального резистора с сопротивлением R {\displaystyle R} равным 50 Ом при комнатной температуре в полосе частот 1 Гц: U тш = 4 k B T R ⋅ 1 Гц ≈ 9 ⋅ 10 − 10 В {\displaystyle U_{\text{тш}}={\sqrt {4k_{\rm {B}}TR\cdot 1~{\text{Гц}}}}\approx 9\cdot 10^{-10}~{\text{В}}} . Это значение соответствует уровню напряжения −61 dBμV или уровню мощности −168 dBm.
  • dBFS (от англ. full scale - «полная шкала») - опорный сигнал (мощность, напряжение) соответствует полной шкале аналого-цифрового преобразователя .
  • dB SPL (от англ. sound pressure level - «уровень

Задайте самому себе вопрос… как много музыкантов на самом деле понимают, что такое децибел ?

Не очень-то много, да? И это неудивительно.

Потому что на самом деле децибелы - сложное понятие.

Но есть и хорошие новости… для аудиозаписи всё, что вам нужно знать, - это несколько базовых моментов.

И в сегодняшнем посте я расскажу о КЛЮЧЕВЫХ вещах, которые каждый музыкант должен знать о децибелах.

Надеюсь, это будет полезно для вас.

Для начала давайте развеем стандартный миф :

ФАКТ: децибел - НЕ единица измерения громкости

Это вообще ничего не единица. Это СООТНОШЕНИЕ. Оно сравнивает одно число с другим.

И хотя в этих числах обычно измеряется уровень звука, это не всегда так. В музыке децибелы также используются для измерения напряжения и мощности оборудования.

ЕЩЁ ФАКТ: децибел - НЕЛИНЕЙНОЕ измерение

Большинство единиц измерения линейны. Например, 2 дюйма в 2 раза длиннее, чем 1 дюйм, а 4 дюйма в 2 раза длиннее, чем 2 дюйма. Если построить график из этих чисел, то их свяжет прямая линия.

Но с децибелами так не получится. Децибелы - ЛОГАРИФМИЧЕСКИЕ единицы измерения. Если вы не помните логарифмы из школьного курса математики, вот очень краткое их объяснение:

Когда мы имеем дело с логарифмами, каждая следующая единица экспоненциально увеличивает число. Например:

  • +3 дБ = мощность х2
  • +10 дБ = мощность х10
  • +60 дБ = мощность х1000000

Поняли? Хорошо. Вот почему вам это нужно знать :

Как децибелы применимы к музыке и звукам

Децибелы в музыке - это измерение у ровня з вукового д авления (УЗД) . Когда мы говорим, что динамики на рок-концерте играют на 110 дБ, мы имеем в виду, что они играют на УЗД в 110 дБ.

Поскольку децибел - всего лишь соотношение, то 110 дБ на самом деле является сравнением с другим числом: 0 УЗД.

0 УЗД - обычное давление воздуха в атмосфере (20 мПа). Это считается нижним порогом слышимости и точкой отсчёта для всех звуков.

Теперь… к практическим вещам.

Полезные примеры из жизни уровней децибелов

Самый простой способ осознать, что такое децибел - измерить шумы, которые нам постоянно встречаются. Вот примеры шумов, с которыми мы все знакомы:

  • Дыхание : 10 dB
  • Шёпот : 20 dB
  • Обычный разговор : 40 dB
  • Фоновый шум в ресторане : 60 dB
  • Громкость радио/телевизора : 70 dB
  • Мусорная машина : 80 dB
  • Отбойный молоток : 100 dB
  • Болевой порог : 130 dB
  • Реактивный двигатель : 150 dB

Как децибелы влияют на воспринимаемую громкость

Чтобы полностью уловить концепт децибелов, необходимо интуитивно понимать, как изменения в децибелах соотносятся с изменениями в громкости .

Буду честен… от математики у вас заболит голова. Вместо этого - простые примеры, используйте их как шпаргалку:

  • +10 дБ = громкость х2
  • +20 дБ = громкость х4
  • +40 дБ = громкость х16

Предупреждение : Хотя эти числа могут быть полезными, они не “идеальны”. Один и тот же уровень децибелов может быть услышан на разной громкости.

Вот как:

Как частотный баланс влияет на громкость

Когда вы задумываетесь об УЗД в 60 дБ, вы представляете какой-то один уровень громкости.

Оказывается, это не так. Уровень громкости, воспринимаемый нашим мозгом, также зависит от частот, передаваемых звуком.

На равных уровнях децибелов, средние частоты (1–4 кГц) воспринимаются “громче”, чем низкие и высокие частоты.

Этот феномен, известный как кривая Флетчера-Мэнсона, мы рассмотрим в другой статье.

Следующий пункт:

Как расстояние влияет на громкость

Менее очевидно, насколько. Опять же, вычисления очень сложные.

Поэтому, проще говоря, вот 2 простых примера:

  • дистанция х2 = -6 дБ
  • дистанция х10 = -20 дБ

Теперь, когда вы интуитивно разбираетесь в том, как децибелы измеряют уровень звука, осталось узнать одну вещь:

Как децибелы используются в записывающем оборудовании

Чаще всего в звукозаписывающей студии вы наткнётесь на децибелы в измерителях уровня

Которые можно найти во многих устройствах: , и других .

Наверху измерителя вы заметите отметку в 0 дБпш (0 дБ полной шкалы). Это - наивысший уровень сигнала, достижимый на этом оборудовании до ограничения или искажения сигнала.

Ниже - отрицательные значения дБпш, вплоть до -∞ дБпш.

В зависимости от того, кого вы спросите, люди скажут, что они настраивают оборудование для записи между -15 и -6 дБ. Думаю, -10 дБ - хороший компромисс.