Скорость движения. Прямолинейное равномерное движение Знак проекции скорости точки на ось х

3.1. Равнопеременное движение по прямой.

3.1.1. Равнопеременное движение по прямой - движение по прямой с постоянным по модулю и направлению ускорением:

3.1.2. Ускорение () - физическая векторная величина, показывающая, на сколько изменится скорость за 1 с.

В векторном виде:

где - начальная скорость тела, - скорость тела в момент времени t .

В проекции на ось Ox :

где - проекция начальной скорости на ось Ox , - проекция скорости тела на ось Ox в момент времени t .

Знаки проекций зависят от направления векторов и оси Ox .

3.1.3. График проекции ускорения от времени.

При равнопеременном движении ускорение постоянно, поэтому будет представлять собой прямые линии, параллельные оси времени (см. рис.):

3.1.4. Скорость при равнопеременном движении.

В векторном виде:

В проекции на ось Ox :

Для равноускоренного движения:

Для равнозамедленного движения:

3.1.5. График проекции скорости в зависимости от времени.

График проекции скорости от времени - прямая линия.

Направление движения: если график (или часть его) находятся над осью времени, то тело движется в положительном направлении оси Ox .

Значение ускорения: чем больше тангенс угла наклона (чем круче поднимается вверх или опускает вниз), тем больше модуль ускорения; где - изменение скорости за время

Пересечение с осью времени: если график пересекает ось времени, то до точки пересечения тело тормозило (равнозамедленное движение), а после точки пересечения начало разгоняться в противоположную сторону (равноускоренное движение).

3.1.6. Геометрический смысл площади под графиком в осях

Площадь под графиком, когда на оси Oy отложена скорость, а на оси Ox - время - это путь, пройденный телом.

На рис. 3.5 нарисован случай равноускоренного движения. Путь в данном случае будет равен площади трапеции: (3.9)

3.1.7. Формулы для расчета пути

Равноускоренное движение Равнозамедленное движение
(3.10) (3.12)
(3.11) (3.13)
(3.14)

Все формулы, представленные в таблице, работают только при сохранении направления движения, то есть до пересечения прямой с осью времени на графике зависимости проекции скорости от времени.

Если же пересечение произошло, то движение проще разбить на два этапа:

до пересечения (торможение):

После пересечения (разгон, движение в обратную сторону)

В формулах выше - время от начала движения до пересечения с осью времени (время до остановки), - путь, который прошло тело от начала движения до пересечения с осью времени, - время, прошедшее с момента пересечения оси времени до данного момента t , - путь, который прошло тело в обратном направлении за время, прошедшее с момента пересечения оси времени до данного момента t , - модуль вектора перемещения за все время движения, L - путь, пройденный телом за все время движения.

3.1.8. Перемещение за -ую секунду.

За время тело пройдет путь:

За время тело пройдет путь:

Тогда за -ый промежуток тело пройдет путь:

За промежуток можно принимать любой отрезок времени. Чаще всего с.

Тогда за 1-ую секунду тело проходит путь:

За 2-ую секунду:

За 3-ю секунду:

Если внимательно посмотрим, то увидим, что и т. д.

Таким образом, приходим к формуле:

Словами: пути, проходимые телом за последовательные промежутки времени соотносятся между собой как ряд нечетных чисел, и это не зависит от того, с каким ускорением движется тело. Подчеркнем, что это соотношение справедливо при

3.1.9. Уравнение координаты тела при равнопеременном движении

Уравнение координаты

Знаки проекций начальной скорости и ускорения зависят от взаимного расположения соответствующих векторов и оси Ox .

Для решения задач к уравнению необходимо добавлять уравнение изменения проекции скорости на ось:

3.2. Графики кинематических величин при прямолинейном движении

3.3. Свободное падение тела

Под свободным падением подразумевается следующая физическая модель:

1) Падение происходит под действием силы тяжести:

2) Сопротивление воздуха отсутствует (в задачах иногда пишут «сопротивлением воздуха пренебречь»);

3) Все тела, независимо от массы падают с одинаковым ускорением (иногда добавляют - «независимо от формы тела», но мы рассматриваем движение только материальной точки, поэтому форма тела уже не учитывается);

4) Ускорение свободного падения направлено строго вниз и на поверхности Земли равно (в задачах часто принимаем для удобства подсчетов);

3.3.1. Уравнения движения в проекции на ось Oy

В отличии от движения по горизонтальной прямой, когда далеко не всех задач происходит смена направления движения, при свободном падении лучше всего сразу пользоваться уравнениями, записанными в проекциях на ось Oy .

Уравнение координаты тела:

Уравнение проекции скорости:

Как правило, в задачах удобно выбрать ось Oy следующим образом:

Ось Oy направлена вертикально вверх;

Начало координат совпадает с уровнем Земли или самой нижней точкой траектории.

При таком выборе уравнения и перепишутся в следующем виде:

3.4. Движение в плоскости Oxy .

Мы рассмотрели движение тела с ускорением вдоль прямой. Однако этим равнопеременное движение не ограничивается. Например, тело, брошенное под углом к горизонту. В таких задачах необходимо учитывать движение сразу по двум осям:

Или в векторном виде:

И изменение проекции скорости на обе оси:

3.5. Применение понятия производной и интеграла

Мы не будем приводить здесь подробное определение производной и интеграла. Для решения задач нам понадобятся лишь небольшой набор формул.

Производная:

где A , B и то есть постоянные величины.

Интеграл:

Теперь посмотрим, как понятие производной и интеграла применимо к физическим величинам. В математике производная обозначается «"», в физике производная по времени обозначается «∙» над функцией.

Скорость:

то есть скорость является производной от радиус-вектора.

Для проекции скорости:

Ускорение:

то есть ускорение является производной от скорости.

Для проекции ускорения:

Таким образом, если известен закон движения то легко можем найти и скорость и ускорение тела.

Теперь воспользуемся понятием интеграла.

Скорость:

то есть, скорость можно найти как интеграл по времени от ускорения.

Радиус-вектор:

то есть, радиус-вектор можно найти, взяв интеграл от функции скорости.

Таким образом, если известна функция то легко можем найти и скорость, и закон движения тела.

Константы в формулах определяются из начальных условий - значения и в момент времени

3.6. Треугольник скоростей и треугольник перемещений

3.6.1. Треугольник скоростей

В векторном виде при постоянном ускорении закон изменения скорости имеет вид (3.5):

Эта формула означает, что вектор равен векторной сумме векторов и Векторную сумму всегда можно изобразить на рисунке (см. рис.).

В каждой задаче, в зависимости от условий, треугольник скоростей будет иметь свой вид. Такое представление позволяет использовать при решении геометрические соображения, что часто упрощает решение задачи.

3.6.2. Треугольник перемещений

В векторном виде закон движения при постоянном ускорении имеет вид:

При решении задачи можно выбирать систему отсчета наиболее удобным образом, поэтому не теряя общности, можем выбрать систему отсчета так, что то есть начало системы координат помещаем в точку, где в начальный момент находится тело. Тогда

то есть вектор равен векторной сумме векторов и Изобразим на рисунке (см. рис.).

Как и в предыдущем случае в зависимости от условий треугольник перемещений будет иметь свой вид. Такое представление позволяет использовать при решении геометрические соображения, что часто упрощает решение задачи.


На чертежах изображения геометрических тел строятся при использовании метода проекции. Но для этого одного изображения недостаточно, необходимо минимум две проекции. С помощью них и определяются точки в пространстве. Следовательно, нужно знать, как найти проекцию точки.

Проекция точки

Для этого потребуется рассмотреть пространство двугранного угла, с расположенной внутри точкой (А). Здесь используются горизонтальная П1 и вертикальная П2 плоскости проекций. Точка (А) проецируется на проекционные плоскости ортогонально. Что касается перпендикулярных проецирующих лучей, то они объединяются в проецирующую плоскость, перпендикулярную плоскостям проекций. Таким образом, при совмещении горизонтальной П1 и фронтальной П2 плоскостей путем вращения по оси П2 / П1, получаем плоский чертеж.

Затем перпендикулярно оси показывается линия с расположенными на ней точками проекции. Так получается комплексный чертеж. Благодаря построенным отрезкам на нем и вертикальной линии связи, легко можно определять положение точки относительно проекционных плоскостей.

Чтобы было проще понять, как найти проекцию, необходимо рассмотреть прямоугольный треугольник. Его короткая сторона является катетом, а длинная – гипотенузой. Если выполнить на гипотенузу проекцию катета, то она поделится на два отрезка. Для определения их величины, нужно выполнить расчет набора исходных данных. Рассмотрим на данном треугольнике, способы расчета основных проекций.

Как правило, в данной задаче указывают длину катета N и длину гипотенузы D, чью проекцию и требуется найти. Для этого узнаем, как найти проекцию катета.

Рассмотрим способ нахождения длины катета (А). Учитывая, что среднее геометрическое от проекции катета и длины гипотенузы равняется искомой нами величине катета: N = √(D*Nd).

Как найти длину проекции

Корень из произведения можно найти возведением в квадрат значения длины искомого катета (N), а затем поделенного на длину гипотенузы: Nd = (N / √ D)² = N² / D. При указании в исходных данных значений только катетов D и N, длину проекции следует находить при помощи теоремы Пифагора.
Найдем длину гипотенузы D. Для этого нужно воспользоваться значениями катетов √ (N² + T²), а затем подставить полученное значение в следующую формулу нахождения проекции: Nd = N² / √ (N² + T²).

Когда в исходных данных указаны данные о длине проекции катета RD, а также данные о величине гипотенузы D, следует вычислять длину проекции второго катета ND при помощи простой формулы вычитания: ND = D – RD.

Проекция скорости

Рассмотрим, как найти проекцию скорости. Для того чтобы заданный вектор представлял описание движения, его следует разместить в проекции на координатные оси. Различают одну координатную ось (луч), две координатные оси (плоскость) и три координатные оси (пространство). При нахождении проекции необходимо из концов вектора опустить перпендикуляры на оси.

Для того чтобы уяснить значения проекции, необходимо узнать, как найти проекцию вектора.

Проекция вектора

При движении тела перпендикулярно относительно оси, проекция будет представлена в виде точки, и иметь значение равное нулю. Если же движение осуществляется параллельно координатной оси, то проекция будет совпадать с модулем вектора. В случае, когда тело движется таким образом, что вектор скорости направлен под углом φ относительно оси (х), проекция на данную ось будет являться отрезком: V(x) = V cos(φ), где V – это модель вектора скорости.Когда направления вектора скорости и координатной оси совпадают, то проекция является положительной, и наоборот.

Возьмем следующее координатное уравнение: x = x(t), y = y(t), z = z(t). В данном случае функция скорости будет спроецирована на три оси и будет иметь следующий вид: V(x) = dx / dt = x"(t), V(y) = dy / dt = y"(t), V(z) = dz / dt = z"(t). Отсюда следует, что для нахождения скорости необходимо брать производные. Сам же вектор скорости выражается уравнением такого вида: V = V(x) i + V(y) j + V(z) k. Здесь i, j, k являются единичными векторами координатных осей x, y, z соответственно. Таким образом, модуль скорости вычисляется по следующей формуле: V = √ (V(x) ^ 2 + V(y) ^ 2 + V(z) ^ 2).

Определение

Равномерное прямолинейное движение -- это движение с постоянной скоростью, при котором ускорение отсутствует, а траектория движения представляет собой прямую линию.

Скорость равномерного прямолинейного движения не зависит от времени и в каждой точке траектории направлена так же, как и перемещение тела. То есть вектор перемещения совпадает по направлению с вектором скорости. При этом средняя скорость за любой промежуток времени равна мгновенной скорости: $\left\langle v\right\rangle =v$

Определение

Скорость равномерного прямолинейного движения -- это физическая векторная величина, равная отношению перемещения тела $\overrightarrow{S}$ за любой промежуток времени к значению этого промежутка t:

$$\overrightarrow{v}=\frac{\overrightarrow{S}}{t}$$

Таким образом, скорость равномерного прямолинейного движения показывает, какое перемещение совершает материальная точка за единицу времени.

Перемещение при равномерном прямолинейном движении определяется формулой:

$$ \overrightarrow{S} = \overrightarrow{v} \cdot t $$

Пройденный путь при прямолинейном движении равен модулю перемещения. Если положительное направление оси ОХ совпадает с направлением движения, то проекция скорости на ось ОХ равна величине скорости и положительна: $v_x = v$, то есть $v $>$ 0$

Проекция перемещения на ось ОХ равна: $s = v_t = x - x0$

где $x_0$ - начальная координата тела, $х$ - конечная координата тела (или координата тела в любой момент времени)

Уравнение движения, то есть зависимость координаты тела от времени $х = х(t)$, принимает вид: $х = x_0 + v_t$

Если положительное направление оси ОХ противоположно направлению движения тела, то проекция скорости тела на ось ОХ отрицательна, скорость меньше нуля ($v $

Зависимость проекции скорости тела от времени показана на рис. 1. Так как скорость постоянна ($v = const$), то графиком скорости является прямая линия, параллельная оси времени Ot.

Рис. 1. Зависимость проекции скорости тела от времени при равномерном прямолинейном движении.

Проекция перемещения на координатную ось численно равна площади прямоугольника ОАВС (рис. 2), так как величина вектора перемещения равна произведению вектора скорости на время, за которое было совершено перемещение.

Рис. 2. Зависимость проекции перемещения тела от времени при равномерном прямолинейном движении.

График зависимости перемещения от времени показан на рис. 3. Из графика видно, что проекция скорости на ось Ot численно равна тангенсу угла наклона графика к оси времени:

Рис. 3. Зависимость проекции перемещения тела от времени при равномерном прямолинейном движении.

Зависимость координаты от времени показана на рис. 4. Из рисунка видно, что

tg $\alpha $1 $>$ tg $\alpha $2, следовательно, скорость тела 1 выше скорости тела 2 (v1 $>$ v2).

tg $\alpha $3 = v3 $

Рис. 4. Зависимость координаты тела от времени при равномерном прямолинейном движении.

Если тело покоится, то графиком координаты является прямая, параллельная оси времени, то есть х = х0

Задача 1

Два поезда движутся на встречу друг другу по параллельным рельсам. Скорость первого поезда 10 метров в секунду, длина первого поезда 500 метров. Скорость второго поезда 30 метров в секунду, длина второго поезда 300 метров. Определить в течение какого времени второй поезд будет ехать мимо первого.

Дано: $v_1$=10 м/с; $v_2$=30 м/с; $L_1$=500 м; $L_2$=300 м

Найти: t --- ?

Время, в течение которого поезда будут проходить мимо друг друга, можно определить, разделив общую длину поездов на их относительную скорость. Скорость первого поезда относительно второго определяется по формуле v= v1+v2 Тогда формула для определения времени принимает вид: $t=\frac{L_1+L_2}{v_1+v_2}=\frac{500+300}{10+30}=20\ c$

Ответ: второй поезд будет ехать мимо первого в течение 20 секунд.

Задача 2

Определить скорость течения реки и скорость катера в стоячей воде, если известно, что катер проходит расстояние 300 километров по течению за 4 часа, а против течения -- за 6 часов.

Дано: $L$=300000 м; $t_1$=14400 с; $t_2$=21600 с

Найти: $v_p$ - ?; $v_k$ - ?

Скорость катера по течению реки относительно берега $v_1=v_k+v_p$, а против течения $v_2=v_k-v_p$ . Запишем закон движения для обоих случаев:

Решив уравнения относительно vp и vk, получаем формулы для расчета скорости течения реки и скорости катера.

Скорость течения реки: $v_p=\frac{L\left(t_2-t_1\right)}{2t_1t_2}=\frac{300000\left(21600-14400\right)}{2\times 14400\times 21600}=3,47\ м/с$

Скорость катера: $v_к=\frac{L\left(t_2+t_1\right)}{2t_1t_2}=\frac{300000\left(21600+14400\right)}{2\times 14400\times 21600}=17,36\ м/с$

Ответ: скорость течения реки равна 3,47 метров в секунду, скорость катера равна 17,36 метров в секунду.

Равномерное движение – это движение с постоянной скоростью, то есть когда скорость не изменяется (v = const) и ускорения или замедления не происходит (а = 0).

Прямолинейное движение – это движение по прямой линии, то есть траектория прямолинейного движения – это прямая линия.

Равномерное прямолинейное движение – это движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения. Например, если мы разобьём какой-то временной интервал на отрезки по одной секунде, то при равномерном движении тело будет перемещаться на одинаковое расстояние за каждый из этих отрезков времени.

Скорость равномерного прямолинейного движения не зависит от времени и в каждой точке траектории направлена также, как и перемещение тела. То есть вектор перемещения совпадает по направлению с вектором скорости. При этом средняя скорость за любой промежуток времени равна мгновенной скорости:

V cp = v

Пройденный путь при прямолинейном движении равен модулю перемещения. Если положительное направление оси ОХ совпадает с направлением движения, то проекция скорости на ось ОХ равна величине скорости и положительна:

V x = v, то есть v > 0

Проекция перемещения на ось ОХ равна:

S = vt = x – x 0

где x 0 – начальная координата тела, х – конечная координата тела (или координата тела в любой момент времени)

Уравнение движения , то есть зависимость координаты тела от времени х = х(t), принимает вид:

Х = x 0 + vt

Если положительное направление оси ОХ противоположно направлению движения тела, то проекция скорости тела на ось ОХ отрицательна, скорость меньше нуля (v < 0), и тогда уравнение движения принимает вид:

Х = x 0 - vt

Зависимость скорости, координат и пути от времени

Зависимость проекции скорости тела от времени показана на рис. 1.11. Так как скорость постоянна (v = const), то графиком скорости является прямая линия, параллельная оси времени Ot.

Рис. 1.11. Зависимость проекции скорости тела от времени при равномерном прямолинейном движении.

Проекция перемещения на координатную ось численно равна площади прямоугольника ОАВС (рис. 1.12), так как величина вектора перемещения равна произведению вектора скорости на время, за которое было совершено перемещение.

Рис. 1.12. Зависимость проекции перемещения тела от времени при равномерном прямолинейном движении.

График зависимости перемещения от времени показан на рис. 1.13. Из графика видно, что проекция скорости равна

V = s 1 / t 1 = tg α

где α – угол наклона графика к оси времени.Чем больше угол α, тем быстрее движется тело, то есть тем больше его скорость (больший путь тело проходит за меньшее время). Тангенс угла наклона касательной к графику зависимости координаты от времени равен скорости:

Tg α = v

Рис. 1.13. Зависимость проекции перемещения тела от времени при равномерном прямолинейном движении.

Зависимость координаты от времени показана на рис. 1.14. Из рисунка видно, что

Tg α 1 > tg α 2

следовательно, скорость тела 1 выше скорости тела 2 (v 1 > v 2).

Tg α 3 = v 3 < 0

Если тело покоится, то графиком координаты является прямая, параллельная оси времени, то есть

Х = х 0

Рис. 1.14. Зависимость координаты тела от времени при равномерном прямолинейном движении.

Инструкция

Сам по себе заданный вектор ничего не дает в плане математического описания движения, поэтому его рассматривают в проекциях на координатные оси. Это может быть одна координатная ось (луч), две (плоскость) или три (пространство). Чтобы найти проекции, нужно опустить перпендикуляры из концов вектора на оси.

Проекция представляет собой как бы «тень» вектора. Если тело движется перпендикулярно рассматриваемой оси, проекция выродится в точку и будет иметь нулевое значение. При движении параллельно координатной оси проекция совпадает вектора. И когда тело движется так, что его вектор скорости направлен под некоторым углом φ к оси x, проекция на ось x будет отрезком: V(x)=V cos(φ), где V – модуль . Проекция положительна, когда направление вектора скорости совпадает с положительным направлением координатной оси, и отрицательна в обратном случае.

Пусть движение точки задано координатными уравнениями: x=x(t), y=y(t), z=z(t). Тогда функции скорости, спроецированной на три оси, будут иметь вид, соответственно, V(x)=dx/dt=x"(t), V(y)=dy/dt=y"(t), V(z)=dz/dt=z"(t), то есть для нахождения скорости нужно взять производные. Сам вектор скорости будет выражаться уравнением V=V(x) i+V(y) j+V(z) k, где i, j, k – единичные векторы координатных осей x, y, z. Модуль скорости можно вычислить по формуле V=√(V(x)^2+V(y)^2+V(z)^2).