Газообмен между атмосферным воздухом и кровью называется внешним. Газообмен между альвеолами и кровью организма Газообмен в легких происходит между кровью и

Дыханием называется совокупность процессов, обеспечивающих обмен кислорода и двуокиси углерода между организмом и внешней средой. Эти процессы идут в следующей последовательности:

1. газообмен между легкими и внешней средой - легочная вентиляция, или внешнее дыхание;

2. газообмен между альвеолами и кровью – легочное дыхание;

3. газообмен между кровью и тканями – тканевое или клеточное дыхание;

4. транспорт газов кровью.

Дыхательная система представляет собой совокупность органов, выполняющих возхдухопроводящую и газообменную функции. В нее входят

· верхние дыхательные пути – полость носа, носовая и ротовая часть глотки;

· нижние дыхательные пути – гортань, трахея и бронхи;

· легкие – парный орган.

Воздухоносные пути с внутренней стороны покрыты мерцательным эпителием, реснички которого наклонены в сторону вдыхаемого воздуха. Кроме этого эпителий имеет густую кровеносную сеть. В результате воздух в дыхательных путях увлажняется, очищается и согревается.

Механизм вдоха и выдоха

При акте вдоха происходит сокращение дыхательных межреберных мышц, приподнимающих ребра, одновременно сокращаются мышцы диафрагмы, купол ее, направленный в сторону грудной полости, опускается, органы брюшной полости отодвигаются вниз – происходит увеличение объема грудной клетки. Увеличение объема грудной клетки приводит к увеличению объема легких, которые атмосферным давлением прижимаются к стенке грудной клетки. Увеличение объема легких приводит к уменьшению давления в их полости и поэтому наружный атмосферный воздух в силу разности давлений поступает в них.

При акте выдоха наступает расслабление межреберных мышц (ребра опускаются) и мышц диафрагмы (купол диафрагмы приподнимается и давит на органы грудной полости, в частности сдавливает легкие). В результате этого объем грудной клетки уменьшается, соответственно уменьшается и объем легких, давление в полости легких становится выше атмосферного и поэтому воздух выталкивается из легких наружу через дыхательные пути.

Газообмен в легких

В легких происходит газообмен между альвеолярным воздухом и кровью. Этому газообмену способствует малая толщина так называемого аэрогематического барьера. Этот барьер между воздухом и кровью образован стенкой альвеолы и стенкой легочного капилляра. Толщина его составляет 2 слоя клеток, что равно примерно 2,5 мкм. Стенка альвеолы изнутри покрыта тонкой пленкой фосфолипида – сурфактантом. Сурфактант препятствует слипанию стенок альвеолы, участвует в иммунной защите с помощью иммуноглобулинов класса А и М. (Ig A, Ig M).

В альвеолярном воздухе концентрация кислорода (парциальное давление) намного выше (100 мм рт.ст.), чем в венозной крови (40 мм рт.ст.), протекающей по легочным капиллярам. Поэтому кислород легко выходит из альвеолы в кровь, где он быстро вступает в соединение с гемоглобином эритроцитов. Одновременно углекислый газ, концентрация которого в венозной крови высокая (47 мм рт. ст.), диффундирует в альвеолы, где давление углекислого газа ниже (40 мм рт. ст.).


В результате парциальное давление кислорода (и парциальное давление углекислого газа) в альвеолярном воздухе и крови выравнивается.

Транспорт газов кровью

После диффузии кислорода в кровь он соединяется с гемоглобином эритроцитов, превращаясь в непрочное соединение оксигемоглобин. Одна молекула гемоглобина может присоединить к себе 4 молекулы кислорода. Затем кровь переносит эритроциты к тканям, где гемоглобин отдает кислород и присоединяет к себе двуокись углерода, превращаясь в непрочное соединение карбгемоглобин. Возвращаясь в легкие, кровь опять отдает двуокись углерода и принимает кислород.

Недостаточное поступление кислорода в кровь называется гипоксией. Она может возникнуть при подъеме человека на высоту 4000-5000 м над уровнем моря. Такое состояние называется горной болезнью.

При остановке дыхания развивается асфиксия – удушье. Такое состояние может наступить при утоплении, ударе электрическим током или отравлении газами.

Особенности распространения возбуждения. Сольтаторноеи непрерывное проведение возбуждения. Скорость проведения возбуждения. Антидромное, артодромное, бездекрементное, изолированное проведение возбуждения, фактор надежности.

Все особенности распространения возбужде­ния в ЦНС объясняются ее нейронным стро­ением - наличием химических синапсов, многократным ветвлением аксонов нейро­нов, наличием замкнутых нейронных путей. Этими особенностями являются следующие.

1.Одностороннее распространение воз­буждения в нейронных цепях, в рефлектор­ных дугах. Одностороннее распространение возбуждения от аксона одного нейрона к телу или дендритам другого нейрона (но не обрат­но) объясняется свойствами химических си­напсов, которые проводят возбуждение толь­ко в одном направлении.

2.Замедленное распространение возбуж­дения в ЦНС по сравнению с нервным во­локном объясняется наличием на путях рас­пространения возбуждения множества хими­ческих синапсов, в каждом из которых до возникновения ВПСП имеется синаптичес-кая задержка около 0,5 мс. Время проведе­ния возбуждения через синапс затрачивается на выделение медиатора в синаптическую щель, распространение его до постсинапти-ческой мембраны, возникновение ВПСП и, наконец, ПД. Суммарная задержка передачи возбуждения в нейроне при одновременном поступлении к нему многих импульсов до­стигает величины порядка 2 мс. Чем больше синапсов в нейрональной цепочке, тем меньше общая скорость распространения по ней возбуждения. По латентному времени рефлекса, точнее по центральному времени рефлекса, можно ориентировочно рассчи­тать число нейронов той или иной рефлек­торной дуги.

3.Иррадиация (дивергенция) возбуждения в

ЦНС объясняется ветвлением аксонов ней­ронов (в среднем нейрон образует до 1000 окончаний) и их способностью устанавли­вать многочисленные связи с другими нейро­нами, наличием вставочных нейронов, аксо­ны которых также ветвятся (рис. 7.3, А). Ир­радиацию возбуждения можно легко наблю­дать в опыте на спинальной лягушке, когда слабое раздражение вызывает сгибание од­ной конечности, а сильное - энергичные движения всех конечностей и даже туловища. Дивергенция расширяет сферу действия каж­дого нейрона. Один нейрон, посылая им­пульсы в кору большого мозга, может акти­вировать до 5000 нейронов.

4.Конвергенция возбуждения (принцип об­щего конечного пути) - схождение возбуж­дения различного происхождения по не­скольким путям к одному и тому же нейрону или нейронному пулу (принцип воронки шеррингтона). Объясняется наличием мно­гих аксонных коллатералей, вставочных ней­ронов, а также тем, что афферентных путей в несколько раз больше, чем эфферентных нейронов. На одном нейроне ЦНС может располагаться до 10 000 синапсов, в мотоней­ронах спинного мозга - до 20 000 синапсов. Явление конвергенции возбуждения в ЦНС имеет широкое распространение. Примером может служить конвергенция возбуждений на спинальноммотонейроне. Так, к одному и тому же спинальному мотонейрону подходят первичные афферентные волокна (рис. 7.3, Б), а также различные нисходящие пути мно­гих вышележащих центров ствола мозга и других отделов ЦНС. Явление конвергенции весьма важно: оно обеспечивает, например, участие одного мотонейрона в нескольких различных реакциях. Мотонейрон, иннерви-рующий мышцы глотки, участвует в рефлек­сах глотания, кашля, сосания, чиханья и ды­хания, образуя общий конечный путь для многочисленных рефлекторных дуг. На рис. 7.3, А показаны два афферентных волокна, каждое из которых отдает коллатерали к 4 нейронам таким образом, что 3 нейрона изобщего их числа, равного 5, образуют связи с обоими афферентными волокнами. На каж­дом из этих 3 нейронов конвергируют два афферентных волокна.

1. Непрерывное распространение ПД осу­ществляется в безмиелиновых волокнах типа С, имеющих равномерное распределение по­тенциалзависимых ионных каналов, участву­ющих в генерации ПД. Проведение нервного импульса начинается с этапа электротони­ческого распространения возникшего ПД. Амплитуда ПД нервного волокна (мембран­ный потенциал + инверсия) составляет около 90 мВ, постоянная длины мембраны(Km) в безмиелиновых волокнах равна 0,1 - 1,0 мм.

Поэтому ПД, распространяясь на этом рас­стоянии как электротонический потенциал и сохранив как минимум 37 % своей амплиту­ды, способен деполяризовать мембрану до критического уровня и генерировать на всем протяжении новые ПД (рис. 5.3). При этом на этапе электротонического распростране­ния нервного импульса ионы движутся вдоль волокна между деполяризованным и поляри­зованным участками, обеспечивая проведе­ние возбуждения в соседние участки волок­на. Реально при неповрежденном нервном волокне этап чисто электротонического рас­пространения ПД (вдоль мембраны) предель­но мал, так как потенциалзависимые каналы имеются в непосредственной близости друг от друга и, естественно, - от возникшего по­тенциала действия и наблюдается только до достижения деполяризации, равной 50 % Екр. Далее включается перемещение ионов в клетку (нервное волокно) и из клетки за счет активации ионных каналов.

При формировании нового ПД в соседнем участке в фазе деполяризации возникает мощный ток ионов натрия в клетку вследст­вие активации натриевых каналов, приводя­щий к регенеративной (самоусиливающейся) деполяризации. Этот ток обеспечивает фор­мирование нового ПД той же амплитуды, представляющий собой, как обычно, сумму двух величин - мембранного потенциала покоя и инверсии. В связи с этим проведение ПД осуществляется без декремента (без сни­жения амплитуды). Таким образом, непре­рывное распространение нервного импульса идет через генерацию новых ПД по эстафете, когда каждый участок мембраны выступает сначала как раздражаемый (при поступлении к нему электротонического потенциала), а

затем как раздражающий (после формирова­ния в нем нового ПД).

2. Салыпаторный тип проведения нервно­го импульса осуществляется в миелиновых волокнах (типы А и В), для которых харак­терна концентрация потенциалзависимых ионных каналов только в небольших участ­ках мембраны (в перехватах Ранвье), где их плотность достигает 12 000 на 1 мкм2, что примерно в 100 раз выше, чем в мембранах безмиелиновых волокон. В области миелино­вых муфт (межузловых сегментов), обладаю­щих хорошими изолирующими свойствами, потенциалзависимых каналов почти нет, и мембрана осевого цилиндра там практически невозбудима. В этих условиях ПД, возник­ший в одном перехвате Ранвье, электротони-чески (вдоль волокна, без участия ионных каналов) распространяется до соседнего перехвата, деполяризуя там мембрану до кри­тического уровня, что приводит к возникно­вению нового ПД, т.е. возбуждение прово­дится скачкообразно (рис. 5.4). Постоянная длина мембраны миелинового волокна до­стигает 5 мм. Это значит, что ПД, распро­страняясь электротонически на этом рассто­янии, сохраняет 37 % своей амплитуды (около 30 мВ) и может деполяризовать мем­брану до критического уровня (пороговый потенциал в перехватах Ранвье равен около 15 мВ). Поэтому в случае повреждения бли­жайших на пути следования перехватов Ран­вье потенциал действия может электротони­чески возбудить 2-4-й и даже 5-й перехваты.

Бездекрементное проведение возбуждения. Амплитуда ПД в различных участках нерва одинакова, то есть проведение возбуждения по нервному волокну осуществляется без затухания (бездекрементно). Таким образом, кодирование информации осуществляется не за счёт изменения амплитуды ПД, а путём изменения их частоты и распределения во времени.

· Изолированное проведение возбуждения. Нервные стволы обычно образованы большим количеством нервных волокон, однако ПД, идущие по каждому из них, не передаются на соседние. Эта особенность нервных волокон обусловлена: Ú наличием оболочек, окружающих отдельные нервные волокна и их пучки (в результате образуется барьер, предупреждающий переход возбуждения с волокна на волокно); Ú сопротивлением межклеточной жидкости (жидкость, находящаяся между волокнами, имеет гораздо меньшее сопротивление току, чем мембрана аксонов; поэтому ток шунтируется по межволоконным пространствам и не доходит до соседних волокон).

ГАЗООБМЕН И ТРАНСПОРТ ГАЗОВ

Количество кислорода , поступающего в альвеолярное пространство из вдыхаемого воздуха в единицу времени в стационарных условиях дыхания, равно количеству кислорода, переходящего за это время из альвеол в кровь легочных капилляров. Именно это обеспечивает постоянство концентрации кислорода в альвеолярном пространстве.

Эта основная закономерность легочного газообмена характерна и для углекислого газа : количество этого газа, поступающего в альвеолы из смешанной венозной крови, протекающей по легочным капиллярам, равно количеству углекислого газа, удаляющегося из альвеолярного пространства наружу с выдыхаемым воздухом.

В тканях всего тела, где происходит внутреннее дыхание, кислород переходит из капилляров в клетки, а углекислота - из клеток в капилляры путем диффузии.

Концентрация кислорода в клетках всегда ниже, а концентрация углекислоты – выше чем в капиллярах.

У человека в покое разность между содержанием кислорода в артериальной и смешанной венозной крови равна 45-55 мл О2 на 1 л крови, а разность между содержанием углекислого газа в венозной и артериальной крови составляет 40-50 мл СО2 на 1 л крови. Это значит, что в каждый литр крови, протекающей по легочным капиллярам, поступает из альвеолярного воздуха примерно 50 мл О2, а из крови в альвеолы - 45 л СО2. Концентрация О2 и СО2 в альвеолярном воздухе остается при этом практически постоянной, благодаря вентиляции альвеол.

ОБМЕН ГАЗОВ МЕЖДУ АЛЬВЕОЛЯРНЫМ ВОЗДУХОМ И КРОВЬЮ

Альвеолярный воздух и кровь легочных капилляров разделяет так называемая альвеолярно-капиллярная мембрана , толщина которой варьирует от 0.3 до 2.0 мкм. Основу альвеолярно-капиллярной мембраны составляет альвеолярный эпителий и капиллярный эндотелий, каждый из которых расположен на собственной базальной мембране и образует непрерывную выстилку, соответственно, альвеолярной и внутрисосудистой поверхности. Между эпителиальной и эндотелиальной базальными мембранами находится интерстиций. Рис.1.

В отдельных участках базальные мембраны практически прилегают друг к другу.

Обмен респираторных газов осуществляется через совокупность субмикроскопических структур , содержащих гемоглобин эритроцитов, плазму крови, капиллярный эндотелий и его две плазматические мембраны, сложный по составу соединительно-тканный слой, альвеолярный эпителий с двумя плазматическими мембранами, наконец, внутреннюю выстилку альвеол – сурфактант. За счет сурфактанта удлиняется расстояние для диффузии газов, что приводит к небольшому снижению концентрационного градиента на альвеолярно-капиллярной мембране.



Переход газов через альвеолокапиллярную мембрану происходит ПО ЗАКОНАМ ДИФФУЗИИ . Но при растворении газов в жидкости процесс диффузии резко замедляется. Углекислый газ, например, диффундирует в жидкости примерно в 13000 раз, а кислород - в 300000 раз медленнее, чем в газовой среде.

Количество газа, проходящее через легочную мембрану в единицу времени, т.е. скорость диффузии, прямо пропорциональна разнице его парциального давления по обе стороны мембраны и обратно пропорциональна сопротивлению диффузии.

Сопротивление определяется:

n толщиной мембраны величиной поверхности газообмена,

n коэффициентом диффузии газа, зависящим от его молекулярного веса и температуры,

n коэффициентом растворенности газа в биологических жидкостях мембраны

Направление и интенсивность перехода кислорода из альвеолярного воздуха в кровь легочных микрососудов, а углекислого газа - в обратном направлении определяет разница между парциальным давлением газа в альвеолярном воздухе и его напряжением (парциальным давлением растворенного газа) в крови. Для кислорода градиент давления составляет около 60 мм.рт.ст. (парциальное давление в альвеолах - 100 мм.рт.ст., а напряжение в крови, поступающей в легкие, - 40 мм.рт.ст.), а для углекислого газа - примерно 6 мм.рт.ст.(парциальное давление в альвеолах - 40 мм.рт.ст., напряжение в притекающей к легким крови - 46 мм.рт.ст.).

Биофизической характеристикой проницаемости аэрогематического барьера легких для респираторных газов является так называемая диффузионная способность легких . ЭТО КОЛИЧЕСТВО МЛ ГАЗА, ПРОХОДЯЩЕЕ ЧЕРЕЗ ЛЕГОЧНУЮ МЕМБРАНУ В 1 МИНУТУ ПРИ РАЗНИЦЕ ПАРЦИАЛЬНОГО ДАВЛЕНИЯ ГАЗА ПО ОБЕ СТОРОНЫ МЕМБРАНЫ В 1 мм рт. ст.



Величина диффузионной способности легких зависит от их объема и соответствующей ему площади поверхности газообмена.

Величина диффузионной способности легких при задержке дыхания на глубоком вдохе оказывается большей , чем в устойчивом состоянии на уровне функциональной остаточной емкости. За счет гравитационного перераспределения кровотока и объема крови в легочных капиллярах диффузионная способность легких в положении лежа больше , чем в положении сидя, а сидя - больше , чем в положении стоя. С возрастом диффузионная способность легких снижается.

Экскреторная функция легких - удаление более 200 летучих веществ, образовавшихся в организме или попадающих в него извне. В частности, образующиеся в организме углекислый газ, метан, ацетон, экзогенные вещества (этиловый спирт, этиловый эфир), наркотические газообразные вещества (фторотан, закись азота) в различной степени удаляются из крови через легкие. С поверхности альвеол испаряется также вода.

Кроме кондиционирования воздуха легкие участвуют в защите организма от инфекций. Осевшие на стенки альвеол микроорганизмы захватываются и уничтожаются альвеолярными макрофагами. Активированные макрофаги вырабатывают хемотаксические факторы, привлекающие нейтрофильные и эозинофильные гранулоциты, которые выходят из капилляров и участвуют в фагоцитозе. Макрофаги с поглощенными микроорганизмами способны мигрировать в лимфатические капилляры и узлы, в которых может развиться воспалительная реакция. В защите организма от инфекционных агентов, попадающих в легкие с воздухом, имеют значение образующиеся в легких лизоцим, интерферон, иммуноглобулины (IgA, IgG, IgM), специфические лейкоцитарные антитела.

Фильтрационная и гемостатическая функция легких — при прохождении крови через малый круг в легких задерживаются и удаляются из крови мелкие тромбы и эмболы.

Тромбы разрушаются фибринолитической системой легких. Легкими синтезируется до 90% гепарина, который, попадая в кровь, препятствует ее свертыванию и улучшает реологические свойства.

Депонирование крови в легких может достигать до 15% объема циркулирующей крови. При этом не происходит выключения крови, поступившей в легкие из циркуляции. Наблюдается увеличение кровенаполнения сосудов микроциркуляторного русла и вен легких и «депонированная» кровь продолжает участвовать в газообмене с альвеолярным воздухом.

Метаболическая функция включает: образование фосфолипидов и белков сурфактанта, синтез белков, входящих в состав коллагена и эластических волокон, выработку мукополисахаридов, входящих в состав бронхиальной слизи, синтез гепарина, участие в образовании и разрушении биологически активных и других веществ.

В легких ангиотензин I превращается в высокоактивный сосудосуживающий фактор — ангиотензин II, на 80% инактивируется брадикинин, захватывается и депонируется серотонин, а также 30-40% норадреналина. В них инактивируегся и накапливается гистамин, инактивируется до 25% инсулина, 90-95% простагландинов группы Е и F; образуются простагландин (сосудорасширяющий простаниклин) и оксид азота (NO). Депонированные биологически активные вещества в условиях стресса могут выбрасываться из легких в кровь и способствовать развитию шоковых реакций.

Таблица. Недыхательные функции легких

Функция

Характеристика

Защитная

Очищение воздуха (клетки мерцательного эпителия. реологические свойства), клеточный (альвеолярные макрофаги, нейтрофилы, лимфоциты), гуморальный (иммуноглобулины, комплемент, лактоферрин, антипротеазы, интерферон) иммунитет, лизоцим (серозные клетки, альвеолярные макрофаги)

Детоксикационная

Оксидазная система

Синтез физиологически активных веществ

Брадикинин, серотонин, лейкотриены, тромбоксан А2, кинины, простагландины, NO

Метаболизм различных веществ

В малом круге инактивируется до 80 % брадикини- на, до 98 % серотонина, до 60 % каликреина

Липидный обмен

Синтез поверхностно-активных веществ (сурфактант), синтез собственных клеточных структур

Белковый обмен

Синтез коллагена и эластина («каркас» легкого)

Углеводный обмен

Мри гипоксии до 1/3 потребляемого СЬ на окисление глюкозы

Гемостатическая

Синтез простациклина, NO, АДФ, фибринолиз

Кондиционирующая

Увлажнение воздуха

Выделительная

Удаление продуктов метаболизма

Водный баланс

Испарение воды с поверхности, транскапиллярный обмен (перспирация)

Терморегуляция

Теплообмен в верхних дыхательных путях

Депонирующая

До 500 мл крови

Гипоксическая ва- зоконстрнкция

Сужение сосудов легкого при снижении О2 в альвеолах

Газообмен в легких

Важнейшая функция легких — обеспечение газообмена между воздухом легочных альвеол и кровью капилляров малого круга. Для понимания механизмов газообмена необходимо знать газовый состав обменивающихся между собой сред, свойства альвеолокапиллярных структур, через которые идет газообмен, и учитывать особенности легочного кровотока и вентиляции.

Состав альвеолярного и выдыхаемого воздуха

Состав атмосферного, альвеолярного (содержащегося в легочных альвеолах) и выдыхаемого воздуха представлен в табл. 1.

Таблица 1. Содержание основных газов в атмосферном, альвеолярном и выдыхаемом воздухе

На основе определения процентного содержания газов в альвеолярном воздухе рассчитывают их парциальное давление. При расчетах давление водяного пара в альвеолярном газе принимают равным 47 мм рт. ст. Например, если содержание кислорода в альвеолярном газе равно 14,4%, а атмосферное давление 740 мм рт. ст., то парциальное давление кислорода (р0 2) составит: р0 2 = [(740-47)/100] . 14,4 = 99,8 мм рт. ст. В условиях покоя парциальное давление кислорода в альвеолярном газе колеблется около 100 мм рт. ст., а парциальное давление углекислого газа около 40 мм рт. ст.

Несмотря на чередование вдоха и выдоха при спокойном дыхании состав альвеолярного газа изменяется лишь на 0,2- 0,4%, поддерживается относительное постоянство состава альвеолярного воздуха и газообмен между ним и кровью идет непрерывно. Постоянство состава альвеолярного воздуха поддерживается благодаря малой величине коэффициента вентиляции легких (КВЛ). Этот коэффициент показывает, какая часть функциональной остаточной емкости обменивается на атмосферный воздух за 1 дыхательный цикл. В норме КВЛ равен 0,13-0,17 (т.е. при спокойном вдохе обменивается приблизительно 1/7 часть ФОЕ). Состав альвеолярного газа по содержанию кислорода и углекислого газа на 5-6% отличается от атмосферного.

Таблица. 2. Газовый состав вдыхаемого и альвеолярного воздуха

Коэффициент вентиляции различных областей легких может отличаться, поэтому состав альвеолярного газа имеет разную величину не только в отдаленных, но и в соседних участках легкого. Это зависит от диаметра и проходимости бронхов, выработки сурфактанга и растяжимости легких, положения тела и степени наполнения кровью легочных сосудов, скорости и соотношения длительностей вдоха и выдоха и т.д. Особенно сильное влияние на этот показатель оказывает гравитация.

Рис. 2. Динамика движения кислорода в легких и тканях

С возрастом величина парциального давления кислорода в альвеолах практически не меняется, несмотря на значительные возрастные изменения многих показателей внешнего дыхания (уменьшение , ОЕЛ, проходимости бронхов, увеличение ФОЕ, ООЛ и т.д.). Сохранению устойчивости показателя рО 2 в альвеолах способствует возрастное увеличение частоты дыхания.

Диффузия газов между альвеолами и кровью

Диффузия газов между альвеолярным воздухом и кровью подчиняется общему закону диффузии, согласно которому се движущей силой является разность парциальных давлений (напряжений) газа между альвеолами и кровью (рис. 3).

Газы, находящиеся в растворенном состоянии в плазме крови, притекающей к легким, создают их напряжение в крови, которое выражают в тех же единицах (мм рт. ст.), чтои парциальное давление в воздухе. Средняя величина напряжения кислорода (рО 2) в крови капилляров малого круга равна 40 мм рт. ст., а его парциальное давление в альвеолярном воздухе — 100 мм рт. ст. Градиент давления кислорода между альвеолярным воздухом и кровью составляет 60 мм рт. ст. Напряжение углекислого газа в притекающей венозной крови — 46 мм рт. ст., в альвеолах — 40 мм рт. ст. и градиент давления углекислого газа составляет 6 мм рт. ст. Эти градиенты и являются движущей силой газообмена между альвеолярным воздухом и кровью. Следует учитывать, что указанные величины градиентов имеются лишь в начале капилляров, но мере продвижения крови по капилляру разность между парциальным давлением в альвеолярном газе и напряжением в крови уменьшается.

Рис. 3. Физико-химические и морфологические условия газообмена между альвеолярным воздухом и кровыо

На скорость обмена кислорода между альвеолярным воздухом и кровью влияют как свойства среды, через которую идет диффузия, так и время (около 0,2 с), в течение которого происходит связывание перешедшей порции кислорода с гемоглобином.

Для перехода из альвеолярного воздуха в эритроцит и связи с гемоглобином молекула кислорода должна продиффундировать через:

  • слой сурфактанта, выстилающий альвеолу;
  • альвеолярный эпителий;
  • базальные мембраны и интерстициальное пространство между эпителием и эндотелием;
  • эндотелий капилляра;
  • слой плазмы крови между эндотелием и эритроцитом;
  • мембрану эртроцита;
  • слой цитоплазмы в эритроците.

Суммарное расстояние этого диффузионного пространства составляет от 0,5 до 2 мкм.

Факторы, влияющие на диффузию газов в легких, отражены в формуле Фика:

V = −kS(P 1 −P 2)/d,

где V — объем диффундирующего газа; к — коэффициент проницаемости среды для газов, зависящий от растворимости газа в тканях и его молекулярной массы; S — площадь диффузионной поверхности легких; Р 1 и Р 2 , — напряжение газа в крови и альвеолах; d — толщина диффузионного пространства.

На практике в диагностических целях определяют показатель, называемый диффузионная способность легких для кислорода (ДЛ О2). Она равна объему кислорода, продиффундировавшему из альвеолярного воздуха в кровь через всю поверхность газообмена за 1 мин при градиенте давления кислорода 1 мм рт. ст.

ДЛ О2 = Vo 2 /(P 1 −P 2)

где Vo 2 — диффузия кислорода в кровь за 1 мин; Р 1 — парциальное давление кислорода в альвеолах; Р 2 — напряжение кислорода в крови.

Иногда этот показатель называют коэффициентом переноса. В норме, когда взрослый человек находится в состоянии покоя, величина ДЛ О2 = 20-25 мл/мин мм рт. ст. При физической нагрузке ДЛ О2 увеличивается и может достигнуть 70 мл/ мин мм рт. ст.

У пожилых людей величина ДЛ О2 снижается; в 60 лет она приблизительно на 1/3 меньше, чем у молодых людей.

Для определения ДЛ О2 часто используют технически более просто выполнимое определение ДЛ СО. Делают один вдох воздуха, содержащего 0,3% угарного газа, задерживают дыхание на 10-12 с, затем делают выдох и, определяя содержание СО в последней порции выдыхаемого воздуха, рассчитывают переход СО в кровь: ДЛ О2 = ДЛ СО. 1,23.

Коэффициент проницаемости биологических сред для СО 2 в 20-25 раз выше, чем для кислорода. Поэтому диффузия С0 2 в тканях организма и в легких при меньших, чем для кислорода, градиентах его концентраций, идет быстро и углекислый газ, содержащийся в венозной крови при большем (46 мм рт. ст.), чем в альвеолах (40 мм рт. ст.), парциальном давлении, как правило, успевает выходить в альвеолярный воздух даже при некоторой недостаточности кровотока или вентиляции, в то время как обмен кислорода в таких условиях уменьшается.

Рис. 4. Газообмен в капиллярах большого и малого круга кровообращения

Скорость движения крови в легочных капиллярах такая, что один эритроцит проходит через капилляр за 0,75-1 с. Этого времени вполне достаточно для практически полного уравновешивания парциального давления кислорода в альвеолах и его напряжения в крови легочных капилляров. Для связывания кислорода гемоглобином эритроцита требуется лишь около 0,2 с. Также быстро происходит уравновешивание давления углекислого газа между кровью и альвеолами. В опекающей от легких по венам малого круга артериальной крови у здорового человека в обычных условиях напряжение кислорода составляет 85-100 мм рт. ст., а напряжение СО 2 -35-45 мм рт. ст.

Для характеристики условий и эффективности газообмена в легких наряду с ДЛ 0 применяется также коэффициент использования кислорода(КИ О2), который отражает количество кислорода (в мл), поглощаемого из 1 л, поступающего в легкие воздуха: КИ 02 = V O2 мл*мин -1 /МОД л*мин -1 В норме КИ = 35-40 мл*л -1 .

Газообмен в тканях

Газообмен в тканях подчиняется тем же закономерностям, что и газообмен в легких. Диффузия газов идет по направлению градиентов их напряжения, ее скорость зависит от величины этих градиентов, площади функционирующих кровеносных капилляров, толщины диффузионного пространства и свойств газов. Многие из названных факторов, а следовательно, и скорость газообмена, могут изменяться в зависимости от линейной и объемной скорости кровотока, содержания и свойств гемоглобина, температуры, рН, активности клеточных ферментов и ряда других условий.

Кроме этих факторов обмену газами (особенно кислорода) между кровью и тканями способствуют: подвижность молекул оксигемоглобина (диффузия их к поверхности мембраны эритроцита), конвекция цитоплазмы и интерстициальной жидкости, а также фильтрация и реабсорбция жидкости в микроциркуляторном русле.

Газообмен кислорода

Газообмен между артериальной кровью и тканями начинается уже на уровне артериол с диаметром 30-40 мкм и осуществляется на протяжении всего микроциркуляторного русла до уровня венул. Однако основную роль в газообмене играют капилляры. Для изучения газообмена в тканях полезно представление о гак называемом «тканевом цилиндре (конусе)», в который включаются капилляр и прилежащие к нему тканевые структуры, обеспечиваемые кислородом (рис. 5). О диаметре такого цилиндра можно судить по межкапиллярному расстоянию. Оно в сердечной мышце составляет около 25 мкм, в коре большого мозга — 40 мкм, в скелетных мышцах — 80 мкм.

Движущей силой газообмена в тканевом цилиндре является градиент напряжения кислорода. Различают продольный и поперечный его градиенты. Продольный градиент направлен по ходу капилляра. Напряжение кислорода в начальной части капилляра может составлять около 100 мм рт. ст. По мере продвижения эритроцитов к венозной части капилляра и диффузии кислорода в ткань рО2 падает в среднем до 35-40 мм рт. ст., но в некоторых условиях может понизиться и до 10 мм рт. ст. Поперечный градиент напряжения О2 в тканевом цилиндре может достигать 90 мм рт. ст. (в наиболее удаленных от капилляра участках ткани, в так называемом «мертвом углу», р0 2 может быть 0-1 мм рт. ст.).

Рис. 5. Схематическое представление «тканевого цилиндра» и распределения напряжения кислорода в артериальном и венозном концах капилляра в покое и при выполнении интенсивной работы

Таким образом, в тканевых структурах доставка кислорода к клеткам зависит от степени удаления их от кровеносных капилляров. Клетки, прилежащие к венозному участку капилляра, находятся в худших условиях доставки кислорода. Для нормального течения окислительных процессов в клетках достаточно напряжения кислорода 0,1 мм рт. ст.

На условия газообмена в тканях влияет не только межкапиллярное расстояние, но и направление движения крови в соседних капиллярах. Если направление течения крови в капиллярной сети, окружающей данную ячейку ткани, разнонаправленное, то это увеличивает надежность обеспечения ткани кислородом.

Эффективность захвата кислорода тканями характеризует величина коэффициента утилизации кислорода (КУК) — это выраженное в процентах отношение объема кислорода, поглощенного тканью из артериальной крови за единицу времени, ко всему объему кислорода, доставленному кровью в сосуды ткани за то же время. Определить КУК ткани можно по разнице содержания кислорода в крови артериальных сосудов и в венозной крови, оттекающей от ткани. В состоянии физического покоя у человека средняя величина КУК составляет 25-35%. Даже в покос величина КУК в разных органах неодинакова. В покое КУК миокарда составляет около 70%.

При физической нагрузке степень утилизации кислорода увеличивается до 50-60%, а в отдельных наиболее активно работающих мышцах и сердце может достигать 90%. Такое возрастание КУК в мышцах обусловлено, прежде всего, увеличением в них кровотока. При этом раскрываются не функционировавшие в покое капилляры, увеличивается площадь диффузионной поверхности и уменьшаются диффузионные расстояния для кислорода. Возрастание кровотока может быть вызвано как рефлекторно, так и под влиянием местных факторов, расширяющих сосуды мышц. Такими факторами являются повышение температуры работающей мышцы, увеличение рС0 2 и снижение рН крови, которые не только способствуют увеличению кровотока, но также вызывают снижение сродства гемоглобина к кислороду и ускорение диффузии кислорода из крови в ткани.

Понижение напряжения кислорода в тканях или затруднение его использования для тканевого дыхания называют гипоксией. Гипоксия может быть результатом нарушения вентиляции легких или недостаточности кровообращения, нарушения диффузии газов в тканях, а также недостаточности активности клеточных ферментов.

Развитие тканевой гипоксии скелетных мышц и сердца в определенной мере предотвращается имеющимся в них хромопротеином — миоглобином, выполняющим роль депо кислорода. Простетическая группа миоглобина подобна гему гемоглобина, а белковая часть молекулы представлена одной полипептидной цепью. Одна молекула миоглобина способна связать только одну молекулу кислорода, а 1 г миоглобина — 1,34 мл кислорода. Особенно много миоглобина содержится в миокарде — в среднем 4 мг/г ткани. При полной оксигенации миоглобина создаваемый им запас кислорода в 1 г ткани составит 0,05 мл. Этого кислорода может хватить на 3-4 сокращения сердца. Сродство миоглобина к кислороду выше, чем у гемоглобина. Давление полунасыщения Р 50 для миоглобина находится между 3 и 4 мм рт. ст. Поэтому в условиях достаточной перфузии мышцы кровью он запасает кислород и отдает его лишь при появлении условий, близких к гипоксии. Миоглобин у человека связывает до 14% общего количества кислорода в организме.

В последние годы открыты другие белки, способные связывать кислород в тканях и клетках. Среди них белок нейроглобин, содержащийся в ткани мозга, сетчатке глаза, и цитоглобин, содержащийся в нейронах и других типах клеток.

Гипероксия - увеличенное по отношению к норме напряжение кислорода в крови и тканях. Это состояние может развиться при дыхании человека чистым кислородом (для взрослого такое дыхание допустимо не более 4 ч) или помещении его в камеры с повышенным давлением воздуха. При гипероксии могут постепенно развиваться симптомы кислородного отравления. Поэтому при длительном использовании дыхания газовой смесью с повышенным содержанием кислорода его содержание не должно превышать в ней 50%. Особенно опасно повышенное содержание кислорода во вдыхаемом воздухе для новорожденных. Длительное вдыхание чистого кислорода создает угрозу развития повреждения сетчатки глаза, легочного эпителия и некоторых структур мозга.

Газообмен углекислого газа

В норме напряжение углекислого газа в артериальной крови колеблется в пределах 35-45 мм рт. ст. Градиент напряжения углекислого газа между притекающей артериальной кровью и клетками, окружающими капилляр ткани, может достигать 40 мм рт. ст. (40 мм рт. ст. в артериальной крови и до 60-80 мм в глубоких слоях клеток). Под действием этого градиента углекислый газ диффундирует из тканей в капиллярную кровь, вызывая повышение в ней напряжения до 46 мм рт. ст. и увеличение содержания углекислого газа до 56-58 об%. Около четверти от всего выходящего из ткани в кровь углекислого газа связывается с гемоглобином, остальная часть благодаря ферменту карбоангидразе соединяется с водой и образует угольную кислоту, которая быстро нейтрализуется путем присоединения ионов Na" и К" и в виде этих бикарбонатов транспортируется к легким.

Количество растворенного углекислого газа в организме человека составляет 100-120 л. Это примерно в 70 раз больше запасов кислорода в крови и тканях. При изменении напряжения углекислого газа в крови между нею и тканями идет его интенсивное перераспределение. Поэтому при неадекватной вентиляции легких уровень углекислого газа в крови изменяется медленнее, чем уровень кислорода. Поскольку жировая и костная ткани содержат особенно большое количество растворенного и связанного углекислого газа, то они могут выполнять роль буфера, захватывая углекислый газ при гиперкапнии и отдавая при гипокапнии.

Транспорт газов кровью

Газообмен в легких

Газообмен между альвеолярным воздухом и кровью легочных капилляров происходит вследствие разницы парциального давления кислорода и углекислого газа в альвеолах и напряжения этих газов в крови. Парциальным давлением называют часть общего давления в смеси газов, которое приходится на долю конкретного газа. Парциальное давление газа в жидкости называют напряжением.

В связи с тем, что парциальное давление кислорода в альвеолярном воздухе (106 мм рт.ст.) больше, чем в венозной крови легочных капилляров (40 мм рт.ст.), кислород диффундирует в капилляры. С другой стороны, напряжение углекислого газа в крови капилляров (47 мм рт.ст.) больше, чем в альвеолярном воздухе (40 мм рт.ст), поэтому углекислый газ диффундирует в альвеолы, в сторону меньшего давления.

Следует учесть, что скорость диффузии углекислого газа через стенки альвеол в 20-25 раз выше скорости диффузии кислорода, поэтому обмен углекислого газа в легких происходит достаточно полно, а обмен кислорода – частично. Скорость диффузии кислорода через альвеолярные стенки в кровь составляет 1 / 20 - 1 / 25 скорости диффузии углекислого газа, поэтому в оттекающей от легких артериальной крови парциальное давление кислорода на 6 мм рт.ст. меньше, чем в альвеолярном воздухе.

Транспорт газов осуществляется кровью и обеспечивается разностью парциального давления (напряжения) газов по пути их следования: кислорода от легких к тканям, углекислого газа от клеток к легким.

Кислород плохо растворим в плазме крови, поэтому основную роль в его транспорте выполняет гемоглобин эритроцитов, образующий с ним нестойкое соединение оксигемоглобин. Уменьшение кислорода в крови называется гипоксемией.

Углекислый газ транспортируется к легким в растворенном виде, в виде непрочных соединений – угольной кислоты, бикарбонатов натрия и калия. Только 25-30% - соединяется с гемоглобином, образуя нестойкое соединение – карбгемоглобин.

Пониженное парциальное давление кислорода в тканях (0-20 мм рт ст.) по сравнению с высоким парциальным давление его в атмосферном воздухе заставляет этот газ проникать в ткани. Для углекислого газа градиент (перепад) давления направлен в противоположную сторону: в тканях парциальное давление углекислого газа равно 60 мм рт.ст., а в атмосферном воздухе – всего 0,2 мм рт.ст. В результате углекислый газ удаляется из тканей.

На интенсивность газообмена влияют: кислотность среды, температура тела человека, длина капилляров, скорость кровотока и др. Чем интенсивнее обмен веществ в ткани, тем плотнее в ней сеть капилляров: например, в миокарде один капилляр приходится на каждое мышечное волокно. Потребность органов в кислороде различна: она велика в миокарде, коре больших полушарий, печени, корковом веществе почек и уменьшена в мышцах, белом веществе головного мозга Снабжение кислородом сердца максимально во время диастолы и минимально во время систолы. Потребность миокарда в кислороде на короткое время удовлетворяется дыхательным мышечным белком – миоглобином, но его запасы ограничены. Необходимое напряжение кислорода в крови и тканях обеспечивается лишь при оптимальном содержании СО ² и О ² в альвеолярном воздухе и крови легочных капилляров, что поддерживается глубиной и частотой дыхания. Снижение парциального давления кислорода в тканях называется тканевой гипоксией или же аноксией (если парциальное давление кислорода в ткани равно нулю).



Снабжение тканей кислородом и удаление углекислого газа обеспечивается согласованной деятельностью нескольких систем: крови, дыхательной, сердечно-сосудистой. Увеличение интенсивности тканевого дыхания в работающих органах осуществляется только при соответствующем увеличении вентиляции легких, работы сердца и объема циркулирующей крови.

text_fields

text_fields

arrow_upward

Количество кислорода, поступающего в альвеолярное пространство из вдыхаемого воздуха в единицу времени в стационарных условиях дыхания, равно количеству кислорода, переходящего за это время из альвеол в кровь легочных капилляров . Именно это обеспечивает постоянство концентрации (и парциального давления) кислорода в альвеолярном пространстве. Эта основная закономерность легочного газообмена характерна и для углекислого газа: количество этого газа, поступающего в альвеолы из смешанной венозной крови, протекаю­щей по легочным капиллярам, равно количеству углекислого газа, удаляющегося из альвеолярного пространства наружу с выдыхаемым воздухом.

У человека в покое разность между содержанием кислорода в артериальной и смешанной венозной крови равна 45-55 мл О 2 на 1 л крови, а разность между содержанием углекислого газа в ве­нозной и артериальной крови составляет 40- 50 мл СО 2 на 1 л крови. Это значит, что в каждый литр крови, протекающей по легочным капиллярам, поступает из альвеолярного воздуха примерно 50 мл О 2 , а из крови в альвеолы - 45 л СО 2 . Концентрация О 2 и СО 2 в альвеолярном воздухе остается при этом практически посто­янной, благодаря вентиляции альвеол.

Обмен газов между альвеолярным воздухом и кровью

text_fields

text_fields

arrow_upward

Альвеоляр­ный воздух и кровь легочных капилляров разделяет так называемая альвеолярно-капиллярная мембрана, толщина которой варьирует от 0.3 до 2.0 мкм. Основу альвеолярно-капиллярной мембраны составляет альвеолярный эпителий и капиллярный эндотелий, каждый из которых расположен на собственной базальной мембране и образует непрерыв­ную выстилку, соответственно, альвеолярной и внутрисосудистой по­верхности. Между эпителиальной и эндотелиальной базальными мем­бранами находится интерстиций. В отдельных участках базальные мембраны практически прилегают друг к другу (рис.8.6).

Рис. 8.6. Альвеолярно-капиллярная мембрана (схема)

Непрерывные компоненты аэрогематического барьера: оболочка клеток (РМ) и базальная мембрана (ВМ). Прерывистые компонен­ты: альвеолярные макрофаги (Р), пузырьки и вакуоли (V), митохондрии (М), эндоплазматический ретикулум (ER), ядра (N), пластинчатый комплекс (G), коллагеновые (С) и эластические (EL) волокна соединительной ткани.

Сурфактант

text_fields

text_fields

arrow_upward

Обмен респираторных газов осуществляется через совокупность субмикроскопических структур, содержащих гемоглобин эритроцитов, плазму крови, капиллярный эндотелий и его две плазматические мембраны, сложный по составу соединительнотканный слой, альве­олярный эпителий с двумя плазматическими мембранами, наконец, внутренюю выстилку альвеол - сурфактант (поверхностно-актив­ное вещество). Последний имеет толщину около 50 нм, представляет собой комплекс фосфолипидов, белков и полисахаридов и постоянно вырабатывается клетками альвеолярного эпителия, подвергаясь разрушению с периодом полураспада 12-16 часов. Наслоение сурфактанта на эпителиальную выстилку альвеолы создает дополнительную к альвеолярно-капиллярной мембране диффузионную среду, которую газы преодолевают при их массопереносе. За счет сурфактанта уд­линяется расстояние для диффузии газов, что приводит к неболь­шому снижению концентрационного градиента на альвеолярно-ка­пиллярной мембране. Однако, без сурфактанта дыхание вообще было 6ы невозможно, так как стенки альвеолы слиплись бы под действи­ем значительного поверхностного натяжения, присущего альвеоляр­ному эпителию.

Сурфактант снижает поверхностное натяжение аль­веолярных стенок до близких к нулевым величинам и тем самым :

а) создает возможность расправления легкого при первом вдохе но­ворожденного,
б) препятствует развитию ателектазов при выдохе,
в) обеспечивает до 2/3 эластического сопротивления ткани легкого взрослого человека и стабильность структуры респираторной зоны,
г) регулирует скорость абсорбции кислорода по границе раздела фаз газ-жидкость и интенсивность испарения воды с альвеолярной по­верхности.

Сурфактант также очищает поверхность альвеол от по­павших с дыханием инородных частиц и обладает бактериостатической активностью.

Переход газов через альвеоло-капиллярную мембрану

text_fields

text_fields

arrow_upward

Переход газов через альвеоло-капиллярную мембрану происходит по законам диффузии, но при растворении газов в жидкости процесс диффузии резко замедляется. Углекислый газ, например, диффундирует в жидкости примерно в 13000 раз, а кислород - в 300000 раз медленнее, чем в газовой среде. Количество газа, проходящее через ле­гочную мембрану в единицу времени, т.е. скорость диффузии, прямо пропорциональна разнице его парциального давления по обе стороны мембраны и обратно пропорциональна сопротивлению диффузии. Пос­леднее определяется толщиной мембраны и величиной поверхности газообмена, коэффициентом диффузии газа, зависящим от его моле­кулярного веса и температуры, а также коэффициентом растворимости газа в биологических жидкостях мембраны.

Направление и интенсивность перехода кислорода из альвеоляр­ного воздуха в кровь легочных микрососудов, а углекислого газа - в обратном направлении определяет разница между парциальным давлением газа в альвеолярном воздухе и его напряжением (парци­альным давлением растворенного газа) в крови. Для кислорода гра­диент давления составляет около 60 мм рт.ст. (парциальное давле­ние в альвеолах 100 мм рт.ст., а напряжение в крови, поступающей в легкие, 40 мм рт.ст.), а для углекислого газа - примерно 6 мм рт.ст. (парциальное давление в альвеолах 40 мм рт.ст., напряжение в притекающей к легким крови 46 мм рт.ст.).

Сопротивление диффузии кислорода в легких создают альвеолярно-капиллярная мембрана, слой плазмы в капиллярах, мембрана эритроцита и слой его протоплазмы. Поэтому общее сопротивление диффузии кислорода в легких слагается из мембранного и внутри-капиллярного компонентов. Биофизической характеристикой прони­цаемости аэрогематического барьера легких для респираторных газов является так называемая диффузионная способность легких. Это ко­личество мл газа, проходящее через легочную мембрану в 1 минуту при разнице парциального давления газа по обе стороны мембраны 1 мм рт.ст. У здорового человека в покое диффузионная способ­ность легких для кислорода равна 20-25 мл мин -1 мм рт.ст. -1 .

Величина диффузионной способности легких зависит от их объема и соответствующей ему площади поверхности газообмена. Этим в значительной мере объясняется тот факт, что величина диффузион­ной способности легких у мужчин обычно больше,чем у женщин, а также то, что величина диффузионной способности легких при за­держке дыхания на глубоком вдохе оказывается большей, чем в устойчивом состоянии на уровне функциональной остаточной ем­кости. За счет гравитационного перераспределения кровотока и объема крови в легочных капиллярах диффузионная способность легких в положении лежа больше, чем в положении сидя, а сидя - больше, чем в положении стоя. С возрастом диффузионная способ­ность легких снижается.

Транспорт кислорода кровью

text_fields

text_fields

arrow_upward

Кислород в крови находится в рас­творенном виде и в соединении с гемоглобином. В плазме растворено очень небольшое количество кислорода. Поскольку растворимость кислорода при 37 °С составляет 0.225 мл * л -1 * кПа -1 (0.03 мл-л -1 мм рт.ст. -1), то каждые 100 мл плазмы крови при напряжении кисло­рода 13.3 кПа (100 мм рг.ст.) могут переносить в растворенном состоянии лишь 0.3 мл кислорода. Это явно недостаточно для жизнедеятельности организма. При таком содержании кислорода в кро­ви и условии его полного потребления тканями минутный объем крови в покое должен был бы составлять более 150 л/мин. Отсюда ясна важность другого механизма переноса кислорода путем его со­ единения с гемоглобином.

Каждый грамм гемоглобина способен связать 1.39 мл кислорода и, следовательно, при содержании гемоглобина 150 г/л каждые 100 мл крови могут переносить 20.8 мл кислорода.

Показатели дыхательной функции крови

1. Кислородная емкость гемогло­ бина. Величина, отражающая количество кислорода, которое может связаться с гемоглобином при его полном насыщении, называется кислородной емкостью гемогло­ бина .

2. Со­ держание кислорода в крови. Другим показателем дыхательной функции крови является со­ держание кислорода в крови, которое отражает истинное количество кислорода, как связанного с гемоглобином, так и физически рас­творенного в плазме.

3. Сте­пень насыщения гемоглобина кислородом . В 100 мл артериальной крови в норме содер­жится 19-20 мл кислорода, в таком же объеме венозной крови - 13-15 мл кислорода, при этом артерио-венозная разница составляет 5-6 мл. Отношение количества кислорода, связанного с гемоглоби­ном, к кислородной емкости последнего является показателем сте­пени насыщения гемоглобина кислородом. Насыщение гемоглобина артериальной крови кислородом у здоровых лиц составляет 96%.

Образование оксигемоглобина в легких и его восстановление в тканях находится в зависимости от парциального напряжения кис­лорода крови: при его повышении. Насыщение гемоглобина кисло­родом возрастает, при понижении - уменьшается. Эта связь носит нелинейный характер и выражается кривой диссоциации оксигемо­глобина, имеющей S-образную форму (рис.8.7).

Рис.8.7. Кривая диссоциации оксигемоглобина.

Рис.8.7. Кривая диссоциации оксигемоглобина.
1 - при увеличении рН, или уменьшении температуры, или уменьшении 2,3-ДФГ;
2 - нормальная кривая при рН 7,4 и 37°С;
3 - при уменьшении рН или увеличении температуры или увеличении 2,3-ДФГ.

Оксигенированной артериальной крови соответствует плато кривой диссоциации, а десатурированной крови в тканях - круто снижающаяся ее часть. Пологий подъем кривой в верхнем ее участке (зона высокого на­пряжения О 2) свидетельствует, что достаточно полное насыщение гемоглобина артериальной крови кислородом обеспечивается даже при уменьшении напряжения О 2 до 9.3 кПа (70 мм рт.ст.). По­нижение напряжения О, с 13.3 кПа на 2.0-2.7 кПа (со 100 на 15-20 мм рт.ст.) практически не отражается на насыщении гемоглобина кислородом (НЬО 2 снижается при этом на 2-3%). При более низких значениях напряжения О 2 оксигемоглобин диссоциирует значительно легче (зона крутого падения кривой). Так, при снижении напряже­ния О 2 с 8.0 до 5.3 кПа (с 60 до 40 мм рт.ст.) насыщение гемог­лобина кислородом уменьшается приблизительно на 15%.

Положение кривой диссоциации оксигемоглобина количественно принято выражать парциальным напряжением кислорода, при котором насыщение гемоглобина составляет 50% (Р 50). Нормальная величина Р 50 при температуре 37°С и рН 7.40 - около 3.53 кПа (26.5 мм рт.ст.).

Кривая диссоциации оксигемоглобина при определенных условиях может смещаться в ту или иную сторону, сохраняя S- образную форму, под влиянием изменения рН, напряжения СО 2 температуры тела, содержания в эритроцитах 2,3-дяфосфоглицерата (2,3-ДФГ), от которых зависит способность гемоглобина связывать кислород. В работающих мышцах в результате интенсивного метаболизма повы­шается образование СО 2 и молочной кислоты, а также возрастает теплопродукция. Все эти факторы понижают сродство гемоглобина к кислороду. Кривая диссоциации при этом сдвигается вправо (рис.8.7), что приводит к более легкому освобождению кислорода из оксиге­моглобина, и возможность потребления тканями кислорода увеличи­вается. При уменьшении температуры, 2,3-ДФГ, снижении напря­жения СО, и увеличении рН кривая диссоциации сдвигается влево, сродство гемоглобина к кислороду возрастает, в результате чего доставка кислорода к тканям уменьшается.

Транспорт кровью углекислого газа

text_fields

text_fields

arrow_upward

Являясь конечным продук­том обмена веществ, СО 2 находится в организме в растворенном и связанном состоянии. Коэффициент растворимости СО 2 составляет 0.231 ммольл -1 * кПа -1 (0.0308 ммольл -1 * мм рт.ст -1 .), что почти в 20 раз выше, чем у кислорода. Однако, в растворенном виде перено­сится меньше 10% всего количества СО, транспортируемого кровью. В основном, СО, переносится в химически связанном состоянии, главным образом, в виде бикарбонатов, а также в соединении с белками (так называемые карбоминовые, или карбосоединения).

В артериальной крови напряжение СО 2 5.3 кПа (40 мм рт.ст.), в интерстициальной жидкости его напряжение составляет 8.0- 10.7 кПа (60-80 мм рт.ст.). Благодаря этим градиентам, образующийся в тка­нях СО 2 переходит из интерстициальной жидкости в плазму крови, а из нее - в эритроциты. Вступая в реакцию с водой, СО 2 образует угольную кислоту: СО 2 + Н 2 О <> Н 2 СО 3 . Реакция эта обратима и в тканевых капиллярах идет преимущественно в сторону образования Н 2 СО 3 (рис.8.8.А). В плазме эта реакция протекает медленно, но в эритроцитах образование угольной кислоты под влиянием фермента ускоряет реакцию гидратации СО 2 в 15000-20000 раз. Угольная кислота диссоциирует на ионы Н + и НСО 3 . Когда содержание ионов НСО 3 повышается, они диффундируют их эритроцита в плазму, а ионы Н + остаются в эритроците, так как мембрана эритроцита сравнительно непроницаема для катионов. Выход ионов НСО 3 в плазму уравновешивается поступлением из плазмы ионов хлора. При этом в плазме высвобождаются ионы натрия, которые связываются поступающими из эритроцита ионами НСО 3 , образуя NaHCO 3 . Ге­моглобин и белки плазмы, проявляя свойства слабых кислот, обра­зуют соли в эритроцитах с калием, а в плазме с натрием. Угольная кислота обладает более сильными кислотными свойствами, поэтому при ее взаимодействии с солями белков ион Н + связывается с белковым анионом, а ион НСО 3 с соответствующим катионом об­разует бикарбонат (в плазме NaHCO 3 , в эритроците КНСО 3).

Рис.8.8. Схема процессов, происходящих в плазме и эритроцитах при газообмене в тканях (А) и легких (Б).

В крови тканевых капилляров одновременно с поступлением СО 2 внутрь эритроцита и образованием в нем угольной кислоты происхо­дит отдача кислорода оксигемоглобином. Восстановленный гемоглобин представляет собой более слабую кислоту (т.е. лучший акцептор про­тонов), чем оксигенированный. Поэтому он легче связывает водород­ные ионы, образующиеся при диссоциации угольной кислоты. Таким образом, присутствие восстановленного гемоглобина в венозной крови способствует связыванию СО 2 тогда как образование оксигемоглобина в легочных капиллярах облегчает отдачу углекислого газа.

В переносе кровью СО 2 большое значение имеет также химичес­кая связь СО 2 с конечными аминогруппами белков крови, важней­ший из которых - глобин в составе гемоглобина. В результате реакции с глобином образуется так называемый карбаминогемогло бин. Восстановленый гемоглобин обладает большим сродством к СО 2 , чем оксигемоглобин. Таким образом, диссоциация оксигемоглобина в тканевых капиллярах облегчает связывание СО 2 , а в легких обра­зование оксигемоглобина способствует выведению углекислого газа.

Из общего количества СО, которое может быть извлечено из крови, лишь 8-10% СО, находится в соединении с гемоглобином. Однако, роль этого соединения в транспорте СО 2 кровью достаточно велика. Примерно 25- 30% СО 2 , поглощаемого кровью в капиллярах боль­шого круга, вступает в соединение с гемоглобином, а в легких - выводится из крови.

Когда венозная кровь поступает в капилляры легких, напряжение СО 2 в плазме снижается и находящийся внутри эритроцита в физи­чески растворенном виде СО 2 выходит в плазму. По мере этого, Н 2 СО 3 превращается в СО 2 и воду (рис.8.8.Б), причем карбоангидраза катализирует реакцию, идущую в этом направлении. Н 2 СО 3 для такой реакции доставляется в результате соединения ионов НСО 3 с ионами водорода, высвобождающихся из связи с белковыми анионами.

В состоянии покоя с дыханием из организма человека удаляется 230 мл СО 2 в минуту или около 15000 ммоль в сутки. Поскольку СО 2 является «летучим» ангидридом угольной кислоты, при его уда­лении из крови исчезает примерно эквивалентное количество ионов водорода. Поэтому дыхание играет важную роль в поддержании кислотно-щелочного равновесия во внутренней среде организма. Если в результате обменных процессов в крови увеличивается содержание водородных ионов, то, благодаря гуморальным механизмам регуля­ции дыхания, это приводит к увеличению легочной вентиляции (ги­первентиляции). При этом молекулы СО 2 , образующиеся в процессе реакции НСО 3 + Н + -> Н 2 СО 3 -> Н 2 О + СО 2 , выводятся в большем количестве и рН возвращается к нормальному уровню.

Обмен газов между кровью и тканями

text_fields

text_fields

arrow_upward

Газообмен О 2 и СО 2 между кровью капилляров большого круга и клетками тканей осу­ществляется путем простой диффузии. Перенос дыхательных газов (О 2 - из крови в ткани, СО 2 - в обратном направлении) проис­ходит под действием концентрационного градиента этих газов между кровью в капиллярах и интерстициальной жидкостью. Разность напряжения О 2 по обе стороны стенки кровеносного капилляра, обес­печивающая его диффузию из крови в интерстициальную жидкость, составляет от 30 до 80 мм рт.ст. (4.0-10.7 кПа). Напряжение СО 2 в интерстициальной жидкости у стенки кровеносного капилляра на 20-40 мм рт.ст. (2.7-5.3 кПа) больше, чем в крови. Поскольку СО 2 диффундирует примерно в 20 раз быстрее, чем кислород, удаление СО 2 происходит гораздо легче, чем снабжение кислородом.

На газообмен в тканях влияют не только градиенты напряжения дыхательных газов между кровью и интерстициальной жидкостью, но также площадь обменной поверхности, величина диффузионного расстояния и коэффициенты диффузии тех сред, через которые осуществляется перенос газов. Диффузионный путь газов тем коро­че, чем больше плотность капиллярной сети. В расчете на 1 мм 3 суммарная поверхность капиллярного русла достигает, например, в скелетной мышце 60 м 2 , а в миокарде - 100 м 2 . Площадь диффузии определяет также количество эритроцитов, протекающих по капил­лярам в единицу времени в зависимости от распределения кровотока в микроциркуляторном русле. На выход О 2 из крови в ткань влияет конвекция плазмы и интерстициальной жидкости, а также цитоплазмы в эритроцитах и клетках ткани. Диффундирующий в ткани О 2 потребляется клетками в процессе тканевого дыхания, поэтому разность его напряжения между кровью, интерстициальной жидкостью и клетками существует постоянно, обеспечивая диффу­зию в этом направлении. При увеличении потребления тканью кис­лорода его напряжение в крови уменьшается, что облегчает диссо­циацию оксигемоглобина.

Количество кислорода, которое потребляют ткани, в процентах от общего содержания его в артериальной крови называется коэффи­циентом утилизации кислорода. В покое для всего организма коэф­ фициент утилизации кислорода равен примерно 30-40%. Однако, при этом потребление кислорода в различных тканях существенно отличается, и коэффициент его утилизации, например, в миокарде, сером веществе мозга, печени, составляет 40-60%. В состоянии покоя серым веществом головного мозга (в частности, корой боль­ших полушарий) потребляется в минуту от 0.08 до 0.1 мл О 2 на 1 г ткани, а в белом веществе мозга - в 8-10 раз меньше. В кор­ковом веществе почки среднее потребление О 2 примерно в 20 раз больше, чем во внутренних участках мозгового вещества почки. При тяжелой физической нагрузке коэффициент утилизации О 2 работа­ющими скелетными мышцами и миокардом достигает 90%.

Кислород, поступающий в ткани, используется в клеточных окис­лительных процессах, которые протекают на субклеточном уровне с участием специфических ферментов, расположенных группами в строгой последовательности на внутренней стороне мембран мито­хондрий. Для нормального хода окислительных обменных процессов в клетках необходимо, чтобы напряжение О 2 в области митохондрий было не меньше 0.1-1 мм рт.ст. (13.3-133.3 кПа).
Эта величина называется критическим напряжением кислорода в митохондриях . Поскольку единственных резервом О 2 в большинстве тканей служит его физически растворенная фракция, снижение поступления О 2 из крови приводит к тому, что потребности тканей в О 2 перестают удовлетворяться, развивается кислородное голодание и окислительные обменные процессы замедляются.

Единственной тканью, в которой имеется депо О 2 , является мы­шечная. Роль депо О 2 в мышечной ткани играет пигмент миоглобин, близкий по строению к гемоглобину и способный обратимо связы­вать О 2 . Однако, содержание миоглобина в мышцах человека неве­лико, и поэтому количество запасенного О, не может обеспечить их нормальное функционирование в течение длительного промежутка времени. Сродство миоглобина к кислороду выше, чем у гемогло­бина: уже при напряжении О, 3-4 мм рт.ст. 50% миоглобина пере­ходит в оксимиоглобин, а при 40 мм рт.ст. миоглобин насыщен О 2 до 95%. Во время сокращения мышцы, с одной стороны, увеличи­ваются потребности клеток в энергии и усиливаются окислительные процессы, с другой - резко ухудшаются условия доставки кислоро­да, поскольку при сокращении мышца сдавливает капилляры и доступ крови по ним может прекращаться. Во время сокращения расходуется О 2 , запасенный в миоглобине за время расслабления мышцы. Особое значение это имеет для постоянно активно рабо­тающей мышцы сердца, поскольку ее снабжение кислородом из крови носит периодический характер. Во время систолы в результате повышения интрамурального давления кровоток в бассейне левой коронарной артерии снижается и во внутренних слоях миокарда левого желудочка может на короткое время полностью прекратиться. Когда напряжение О 2 в мышечных клетках падает ниже 10-15 мм рт.ст. (1.3-2.0 кПа), миоглобин начинает отдавать О, запасенный в виде оксимиоглобина за время диастолы. Среднее содержание мио глобина в сердце составляет 4 мг/г. Поскольку 1 г миоглобина может связать примерно до 1.34 мл кислорода, в физиологических условиях запасы кислорода в миокарде составляют около 0.005 мл на 1 г ткани. Этого количества кислорода достаточного для того, чтобы в условиях полного прекращения его доставки кровью под­держивать в миокарде окислительные процессы лишь в течение 3-4 с. Однако, длительность систолы намного короче, поэтому миог­лобин, выполняющий функцию кратковременного депо О 2 , предо­храняет миокард от кислородного голодания.